

182186: Priorsland Cherrywood SHD

Engineering Planning Report

March 2022

Document Control

Document Number: 182186-EPR-PL0

Revision	Description	Date	Prepared	Checked	Approved
PL0	Planning Issue	31/03/2022	MC. Daly	P. Casey	P. Casey

Table of Contents

Document	Controli
Table of C	ii
1.0 Int	roduction1
2.0 Fo	ul Water Drainage Design
2.1	Existing Foul Water Drainage3
2.2	Proposed Foul Water Drainage4
2.2.1	General4
2.2.2	Irish Water Confirmation of Feasibility4
2.2.3	Proposed Foul Water Flows4
2.2.4	Proposed Foul Water Drainage System5
2.2.5	Compliance with CPS Chapter 46
3.0 Su	rface Water Drainage Design7
3.1	Existing Surface Water Drainage7
3.1.1	Public Surface Water Sewerage7
3.2	Proposed Surface Water Drainage8
3.2.1	General8
3.2.2	Design Parameters9
3.2.3	Causeway Flow Modelling - General9
3.2.4	Surface Water Management Objectives: CPS Chapter 4 and Chapter 6
3.2.5	Compliance with the GDSDS 14
3.2.6	Proposed Drainage Network 15
3.2.7	Suds Audit 15
3.3	Sustainable Drainage Systems
3.3.1	Sustainable urban Drainage Systems 16
3.3.2	Surface Water Quantity Management 18
3.3.3	Surface Water Quality Management 23
3.3.4	Amenity & Biodiversity 23
3.3.5	Operation & Maintenance 24
3.4	Surface Water Impact Assessment 25
3.4.1	The Existing Receiving Environment 25
3.4.2	Characteristics of the Proposed Development
3.4.3	Construction Impacts and Mitigation25
3.4.4	Operational Impacts and Mitigation25
4.0 Wa	atermain Design

4.1 E	xisting Water Infrastructure
4.1.1	Existing Public Water Infrastructure
4.2 P	roposed Water Infrastructure
4.2.1	Proposed Water Supply Connection
4.2.2	Irish Water Confirmation of Feasibility 26
4.2.3	Water Supply Demand
4.2.4	Water Reduction Measures
4.2.5	Compliance with CPS Chapter 4
4.3 E	xisting 33" Watermain 30
Appendix A	Existing Services Record DrawingsA-I
Appendix B	Rainfall Supporting DataB-II
Appendix C	Surface Water Calculations - Causeway Flow Modelling C-III
Appendix D	Foul Water Calculations - Causeway Flow ModellingD-IV
Appendix E	Irish Water Pre-Connection Enquiry Confirmation of Feasibility Letter E-V

1.0 Introduction

This report was prepared to accompany a planning application for the proposed development on the site located at Priorsland, Cherrywood, Dublin 18. This report deals specifically with the surface water drainage, foul water drainage and watermain design for this application. This report has been prepared in compliance with the "Greater Dublin Regional Code of Practice for Drainage Works", "Greater Dublin Strategic Drainage Study" and the "Irish Water Code of Practice for Wastewater Infrastructure".

The subject site is currently a greenfield site, with low intensity agricultural use. The Carrickmines river runs through the site from west to east.

The Priorsland site within the Client's ownership has an area of approximately 8.751 hectares in total. The proposal outlined in this planning application is for the development of approximately 6.8 hectares of the Priorsland site. The proposed works are outlined in a series of architectural drawings prepared by MOLA Architects and engineering drawings prepared by PUNCH Consulting Engineers - supplied as part of the planning documentation.

The development will comprise a mixed-use village centre and residential development of 443 no. units comprising 6 no. blocks (A-F) of apartments (up to 5 storeys with basement/undercroft parking) providing 402 no. apartments units (146 no. 1-beds; 218 no. 2-beds and 38 no. 3-beds), and 41 no. houses (19 no. 3-beds and 22 no. 4-beds). All apartments provided with private balconies/terraces. Provision of indoor residential facilities to serve apartment residents.

The Village Centre and non-residential elements will comprise a supermarket, local retail/retail service units, non-retail commercial units, creche, gym, community space, and offices (High Intensity Employment) use.

Provision of car/bicycle/motorcycle parking; ESB sub-stations; bin storages areas, and all associated plant areas.

Provision of the first phase of Priorsland Park (on lands within the applicant's ownership) and other public and communal open spaces.

Construction of Castle Street through the subject lands and two road bridges across the Carrickmines Stream, one to serve the future school site/ park, the second to provide pedestrian and cyclist access to the Carrickmines Luas station and future Transport Interchange to the north. Provision of an additional pedestrian bridge to the park. Provision of an acoustic barrier along the southern/western edge of the site.

All associated site development works, landscaping, boundary treatments and services provision.

Figure 1-1 and Figure 1-2 below indicates the location of the proposed development at Priorsland.

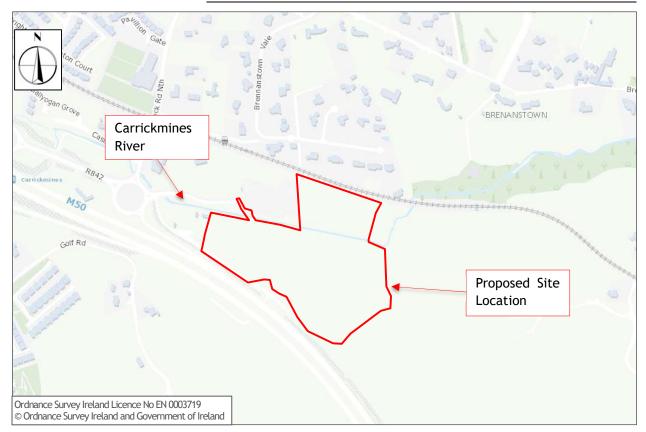


Figure 1-1: Plan View of Site Location at Priorsland, Cherrywood, Dublin 18

Figure 1-2: Aerial View of Existing Site at Priorsland, Cherrywood, Dublin 18

In preparation of this report, and design of the development, PUNCH Consulting Engineers have liaised with the following parties:

- 1. Dún Laoghaire Rathdown County Council, Development Agency Project Team, Cherrywood SDZ
- 2. Irish Water

2.0 Foul Water Drainage Design

2.1 Existing Foul Water Drainage

On the basis of available records, the following foul water drainage exists in the vicinity of the development site

- 1. A 750mm concrete public sewer runs from east to west through the site parallel to the Carrickmines River.
- 2. A 225mm diameter uPVC public sewer connects from a housing estate to the north of the development into the 750mm sewer within the proposed development site.

Refer to Figure 2-1 below and Appendix A for illustration of the existing combined sewer network.

As the site is a greenfield site, there are no existing/baseline foul water flow rates from the site.

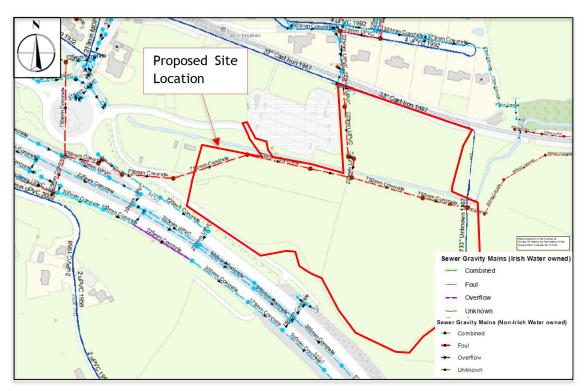


Figure 2-1: Existing Public Watermain & Foul Drainage in the Vicinity of the Priorsland Site (According to Irish Water Records)

2.2 Proposed Foul Water Drainage

2.2.1 General

It is proposed to connect the development sewerage to the existing 750mm concrete sewer that traverses the site, from west to east.

Foul water drainage has been designed with reference to the following documentation:

- 1. DLRCC Cherrywood Planning Scheme Chapter 4: Physical Infrastructure
- 2. DLRCC Cherrywood Planning Scheme Chapter 6: Development Areas
- 3. Greater Dublin Strategic Drainage Study (GDSDS)
- 4. Recommendations for Site Development Works for Housing Areas, published by Department of the Environment and Local Government
- 5. Code of Practise for Wastewater Infrastructure, published by Irish Water
- 6. Design Recommendations for Multi-storey and Underground Car Parks, published by the Institution of Structural Engineers.
- 7. Greater Dublin Regional Code of Practice for Drainage Works
- 8. Wastewater Engineering: Metcalf & Eddy

2.2.2 Irish Water Confirmation of Feasibility

Two *Confirmation of Feasibility* letters have been obtained from Irish Water for the connections for the proposed development. The first, obtained in February 2020 confirms a development of 454no. units can connect to the water and wastewater public infrastructure without upgrades being required to the public networks. The second, obtained in March 2020 confirms a development of 2,902no. units can connect to the water and wastewater public infrastructure without upgrades being required to the public networks. These Confirmation of Feasibility letters have both been included in Appendix E.

2.2.3 Proposed Foul Water Flows

On the basis of the documentation referenced in section 2.2.1 above, the following wastewater characteristics have been taken:

- I. 150 litres/person/day ('Standard Residential')
- II. Allowance of 2.7 persons per dwelling
- III. 10% increase in flow to allow for infiltration

Table 1 presents the foul flows for the development, indicating existing, total and net increase. The total dry weather flow (DWF) was calculated as 2.564 l/s. The sewers are designed for the peak flow of 6DWF with 10% infiltration, which was calculated as 16.921 l/s.

It is noted that the development will incorporate water conservation measures in the sanitary facilities throughout. These will include low flow dual flush toilets, and monobloc low volume push taps. These will reduce the foul discharge from the development.

Source	Quantity	Unit	Flow	Flow unit	Daily	DWF	DWF	6 DWF	6 DWF + 10% infiltration
	quantity				(litres/ day)	m³/day	litres/ sec	litres/ sec	litres/ sec
Domestic	443	units	446	l/unit/day	197578	197.578	2.287	13.721	15.093
Supermarket	1306	m²	400	l/day/100m²	5224	5.224	0.060	0.363	0.399
Retail	715	m²	400	l/day/100m ²	2860	2.860	0.033	0.199	0.218
Non-retail	213	m²	300	l/day/100m ²	639	0.639	0.007	0.044	0.049
Creche	513	m²	750	l/day/100m ²	3848	3.848	0.045	0.267	0.294
Gym	155	m²	750	l/day/100m ²	1163	1.163	0.013	0.081	0.089
Residential Facilities	551.8	m²	750	l/day/100m²	4139	4.139	0.048	0.287	0.316
High Intensity Employment	708	m²	750	l/day/100m²	5310	5.310	0.061	0.369	0.406
Community Facilities	252	m²	300	l/day/100m²	756	0.756	0.009	0.053	0.058
Total					221516	221.516	2.564	15.383	16.921

2.2.4 Proposed Foul Water Drainage System

The proposed foul water drainage system will have two principal components:

- I. Foul water from the ground and upper levels of all buildings, discharging by gravity.
- II. Foul water from Block A/Block B's basement, pumped from the basement.

These are explained further below.

Foul water from the terraced houses and apartment blocks - from ground floor to roof level - will be discharged to the proposed foul drainage network. The foul drainage network is proposed to ultimately discharge to the existing 750mm foul sewer the runs parallel to the Carrickmines River within the site boundary.

The proposed access route to the Priorsland site will be via the Luas Park & Ride Access Road (via the M50 Southbound Roundabout) and is an interim arrangement for construction access.

Once the Castle Street extension becomes viable, and is completed in its entirety, Castle Street to the east of Priorsland will become the standard, on-going access route for the Priorsland development. This will have no effect on the proposed foul water drainage arrangement or discharge point for the site.

Please refer to PUNCH Drawing No. 182186-023, 182186-024 and 182186-025 for details of the proposed foul water drainage system.

2.2.5 Compliance with CPS Chapter 4

The proposed works are in compliance with the requirements of Chapter 4 of the CPS.

	esponse
significant foul trunk sewer is	he existing 750mm trunk sewer located within the Priorsland site s proposed to remain as per the existing regime. This is in line with hap 4.4 of the CPS. Please find extract of Map 4.4 in Figure 2-2 elow.

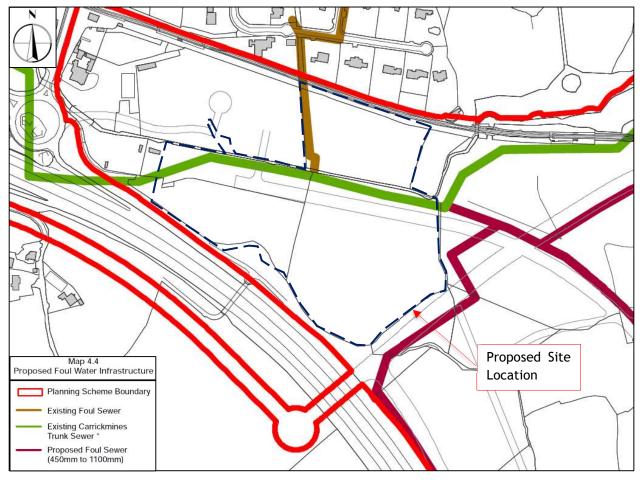


Figure 2-2: Extract from Map 4.4 of the Cherrywood Planning Scheme Chapter 4

3.0 Surface Water Drainage Design

3.1 Existing Surface Water Drainage

3.1.1 Public Surface Water Sewerage

As the Priorsland site is a greenfield site, there is no existing surface water drainage system within the site boundary. A surface water drainage system has been developed to the east of the site, as per Planning Application Reference: DZ15A/0758. However, due to the flow path and levels of the Carrickmines River and Ticknick Stream it is not feasible to propose a connection to the existing drainage system to the east of the Priorsland site.

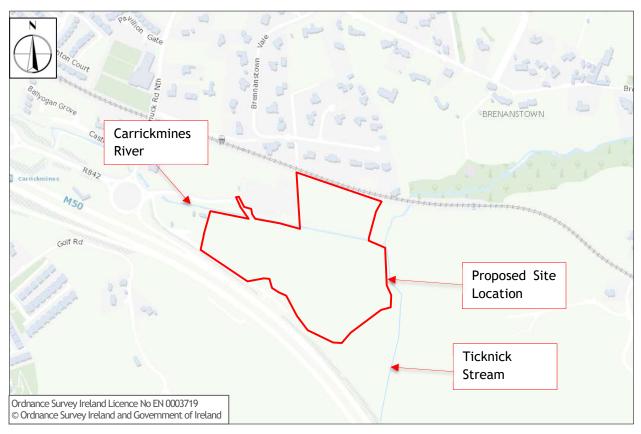


Figure 3-1: Water Courses in the vicinity of the Proposed Development

3.2 Proposed Surface Water Drainage

3.2.1 General

A new surface water sewer network shall be provided for the proposed development which will be entirely separated from the foul water sewer network.

The proposed surface water drainage system has been designed with reference to the following documents:

- I. DLRCC Cherrywood Planning Scheme Chapter 4: Physical Infrastructure
- II. DLRCC Cherrywood Planning Scheme Chapter 6: Development Areas
- III. CIRIA SuDS Manual 2015 C753 The SuDS Manual
- IV. CIRIA Publications C644 Building Greener
- V. Greater Dublin Strategic Drainage Study (GDSDS)
- VI. Greater Dublin Regional Code of Practice for Drainage Works
- VII. Recommendations for Site Development Works for Housing Areas Department of the Environment and Local Government

3.2.2 Design Parameters

Table 3 outlines the design parameters that have been used throughout the design process.

IGSL Limited carried out site investigations in November 2018 at the Priorsland site. Testing was performed in accordance with BRE Digest 365 'Soakaway Design'. Infiltration rates in 4no. instances were between 0.00017m/min and 0.00097m/min. In one other instance an infiltration rate of 0m/min was observed. This was due to high rock in the location of the test. The measured infiltration rates were therefore moderate and infiltration SuDS systems were therefore deemed acceptable for this site. It is noted that the levels on site will be raised by approx. 1-2m for flood risk mitigation at the site. To ensure that the infiltration rate is not compromised where infiltration systems are proposed, an appropriate granular engineering fill material will be specified, and a method statement will be prepared to ensure it is compacted appropriately but retains high infiltration rates at the site. Infiltration testing will be carried out during the works to ensure a high infiltration rate has been achieved.

Groundwater was encountered during the site investigation works at various depths in the boreholes, rising to within 0.6m of the existing surface level in places. Standpipes were installed in selected locations to facilitate long-term monitoring.

It should be noted however, that to facilitate the flood risk protection of the site, the site is proposed to be raised in level. Therefore, the proposed finished level of the site is circa 1m to 2m greater than the existing site levels. Therefore, groundwater should not be an issue for proposed infiltration elements.

Parameter	Value	Notes
Total Site Area	8.751 ha	Total site area owned by the Client.
Development Site Area	6.8 ha	The lands within the Client's ownership to the north of the Carrickmines River are not proposed to be developed as part of this application.
SOIL	3	Confirmed by geotechnical investigation works carried out by IGSL Limited in November 2018.
SPR Value (% runoff)	0.37	As per the FSR procedure
M5-60	16.900	Value obtained from Met Éireann
M5-2day	62.100	Value obtained from Met Éireann
Ratio R	0.273	M5-60/ M5-2day
Climate Change	10%	GDSDS

Table 3:	Design	Parameters	Used in	the	Drainage Desig	n
10010 01	Design.	ananneeers	0500		prannage peolo	••

3.2.3 Causeway Flow Modelling - General

The proposed surface water drainage system has been designed using Causeway Flow software in accordance with the Department of Environment and Local Government's guidance document

"Recommendations for Site Development Works for Housing Areas", with guidance taken from the "Greater Dublin Strategic Drainage Study" (GDSDS) and the Dún Laoghaire-Rathdown County Council Cherrywood SDZ Planning Scheme.

The model has analysed a range of storms at the 1% AEP (1 in 100-year return period storm), with a 10% additional rainfall to allow for climate change in accordance with the requirements of the Cherrywood SDZ Planning Scheme.

The network has been modelled with the proposed attenuation tank volumes and associated hydrobrake flow control outlets included.

Buildings, paved Soft Landscaping Total Effective areas (contribution Contributing Contribution Location (contribution rate of 40%) Area Area rate of 100%) Plot A & B 0.777 ha 0.777 ha 0.777 ha _ Plot C 0.353 ha 0.353 ha 0.353 ha Plot D 0.172 ha 0.172 ha 0.172 ha Plot E 0.477 ha 0.477 ha 0.477 ha Plot F 0.214 ha 0.214 ha 0.214 ha Plot G 1.003 ha 0.328 ha 1.330 ha 1.134 ha Roads, footpaths, 1.703 ha 1.703 ha 1.703 ha public areas Total 4.699 ha 0.328 ha 5.027 ha 4.830 ha

The contributing areas are as follows:

In line with the Cherrywood SDZ Planning Scheme requirement of a discharge rate of 1 l/s/ha, the discharge from the proposed development has been limited to 5 l/s due to the contributing area of 5.027 ha.

Depths of water in the network model (including pipework, manholes, the attenuation tanks and hydrobrakes) have been assessed for surcharging and flood risk. The model is established such that a flood risk is identified in the model results if the water rises to within 300mm of the cover level. If the water level rises to a level below this, it is identified as a surcharge within the model results. It is important to note that this warning is given related to proposed ground level at the node and not related to Finished Floor level. All proposed drainage is within roadways, and the adjacent Floor levels will be higher than the road level at that location.

Causeway includes a design setting called "additional storage". This is included in the software to account for storage volume in the network provided by secondary drainage including access junctions, inspection chambers, service connections etc. This provides additional storage in the network above the storage provided within the attenuation tank and primary drainage network. 20m³/ha is the standard allowance provided for in Causeway Flow and was utilised for this design.

Please refer to detailed Causeway calculations (inputs and outputs) enclosed in Appendix C for details. It should be noted that attenuation tanks for Plots A & B, Plot C, Plot D, Plot E and Plot F have been sized individually, and outflows from each tank have been included in the main site Causeway Flow model as additional inflows to the model. Storage calculations for each plot have been included in Appendix C also.

In order to achieve a flow rate of 5 l/s at the discharge point from the site to Ticknick stream, it is necessary to include flow restrictions throughout the site. High level overflows with high level alarms will be included in each hydrobrake chamber and linked to the building management system so the site management will be alerted if a hydrobrake is blocked.

3.2.4 Surface Water Management Objectives: CPS Chapter 4 and Chapter 6

PUNCH has held pre-planning consultation with DLRCC.

Map 4.2 of the CPS illustrates the overall proposed storm water network intention for the CPS. Please refer to Figure 3-2 below for the storm water intention in relation to the catchment in which the Priorsland site is located. A detention basin is indicated along the southern boundary of the Priorsland site, bordering the M50. The red-line boundary, i.e. lands within the Client's ownership, dissects the proposed detention basin location. Therefore, the full detention basin proposal cannot be delivered with this planning application. However, an alternative proposal of swales and a detention basin has been proposed to serve the Priorsland site. When the owner of the lands of the remaining section of the detention basin is in a position to develop his lands, it will be possible to link the detention basins in both areas to conform with the CPS requirements.

The Carrickmines River runs from east to west through the site and the Ticknick Stream borders the site to the east. Due to site topography and the locations of the Carrickmines River and the Ticknick Stream the detention basis associated with the proposed development will not be able to serve other adjacent developments. It would not be feasible to cross the Carrickmines River and the Ticknick Stream with a surface water network to connect to the proposed detention basin. Therefore, the detention basin proposed for the Priorsland site will only serve the Priorsland site.

A 1d-2d linked hydraulic model has been prepared for the proposed development. The results of this modelling have been presented in a Site-Specific Flood Risk Assessment under separate cover submitted with this planning application. The model indicates the proposed detention basin are located outside of a floodplain.

Specific Objective	Response
PI 6 It is an objective to promote Sustainable Urban Drainage Systems (SuDS) to manage surface and groundwater regimes sustainably.	 SuDS are being used throughout the development. Castle Street is being treated as a Public Realm area as it will ultimately be taken in charge. The following SuDS measures have been used on Castle Street: Infiltration trenches Engineered swales Tree Root Structural Cell Systems The surface water network then connects to the private drainage within the development, to the south of Castle Street. This strategy was taken as Castle Street is "land locked", i.e. bordered to the north by the Carrickmines River and to the east by the Ticknick Stream. Therefore, the network could not be discharged by gravity

Table 4: Specific Objectives set out in Chapter 4 Section 4.1.2 of the CPS

	 to the public drainage network to the east of the Ticknick Stream and therefore cannot discharge to Pond 2A/2B. As the surface water could not be discharged to a watercourse without treatment it was agreed with DLRCC representatives that the best strategy was to connect to the networks to the south of Castle Street, which are deemed as Private Development. The following SuDS measures are proposed within Private Development Site Boundaries, i.e. to the south of Castle Street: Green Roofs Pervious Paving, where water enters the storage sub-base layer via gullies/drainage channels Infiltration Trenches Engineered swales Tree Root Structural Cell Systems The networks will then outfall to a detention basin proposed along the southern boundary of the site. This will be within the public realm. The network will then ultimately outfall to the Ticknick Stream to the east of the proposed development.
PI 7 It is an objective to ensure that stormwater management, flood attenuation and Sustainable (Urban) Drainage Measures (SuDS), including a requirement to undertake Stormwater Audits, shall form part of the pre- planning, planning and post construction stages of any application.	A stormwater management strategy has been developed for the site, which includes a SuDS management train. Flood attenuation measures for the Carrickmines River has been included with this development. This is detailed further in the Site-Specific Flood Risk Assessment submitted under separate cover with this planning application. JBA Consulting were appointed to carry out a Stormwater Audit for this development. DLRCC were engaged with during the pre-planning stage of the project.
PI 8 It is an objective to ensure that SuDS measures shall be fully implemented on all sites to 1 litre per second per hectare runoff rates, unless otherwise agreed with Dún Laoghaire Rathdown County Council. In this regard solutions other than tanking systems shall be required for all developments. For larger	The surface water proposals for the site incorporate SuDS and flow restrictions to restrict positive discharge from the development to 11/s/ha. SuDS that allow infiltration to ground have been included in the design as far as possible. Green roofs have been included in the residential blocks. Intensive green roofs have been incorporated to the designs at podium level in the apartment blocks and extensive green roofs have been incorporated have been incorporated to the design at podium level in the apartment blocks at roof level. 60% roof coverage has been attained with the green roof proposals.

applications Green Roofs shall be used in accordance with Dún Laoghaire- Rathdown County Council's Green Roofs Guidance Document.	
PI 9 It is an objective to ensure urban areas are designed to accommodate surface water flood flow at times of extreme events through the dual use of roads and pathways as flood conveyance channels and low value areas (parkland, car parks, large paved areas etc) used as temporary flood ponding areas.	Entrances to all buildings are above the adjacent road levels. The site generally slopes from north to south. Therefore, surface water flood flow at times of extreme events will be running water and will not have the depth to enter buildings. The water will be conveyed to the landscaped strip lining the southern boundary of the site. This is where engineered swales and detention basins are located. Therefore, these SuDS measure could be surcharged for a time, but these systems will enable the surface water to be discharged to the Ticknick Stream as the extreme weather event subsides.
PI 10 It is an objective to ensure that all trees planted in/adjacent to hard paved areas (footpaths, parking areas etc) incorporate tree root structural cell systems.	Trees planted in or adjacent to hard paved areas incorporate tree root structural cell systems.
PI 11 It is an objective to ensure that predicted flooding in the Priorsland area does not pose an unacceptable risk to persons or property. In this regard a flood containment zone shall be constructed in the Priorsland area by raising adjacent ground levels approx. 500mm and by incorporating a large diameter (1650mm) bypass culvert.	A flood containment zone and bypass culvert for the Carrickmines River has been included with this development. This is detailed further in the Site-Specific Flood Risk Assessment submitted under separate cover with this planning application. Site levels are a minimum of 500mm above the 1 in 1000 year flood event in the Carrickmines River.

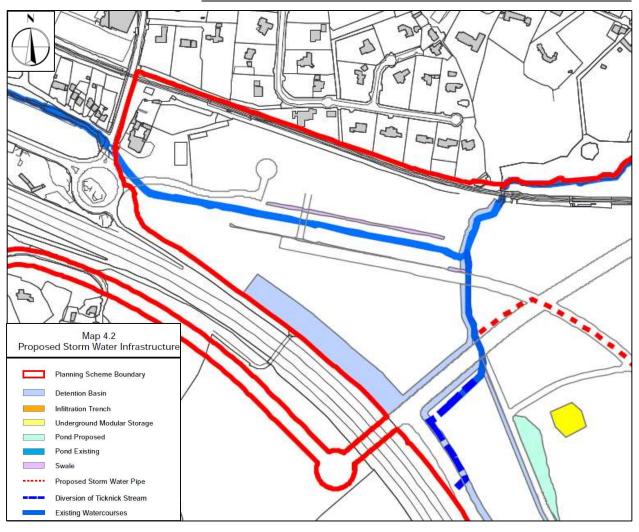


Figure 3-2: Extract from Map 4.2 of the Cherrywood Planning Scheme Chapter 4

3.2.5 Compliance with the GDSDS

There are 4 criteria as set out in the GDSDS-RDP Volume 2 Section 6.3.4 (table 6.3).

- 1) River water quality protection: the initial 5-10mm of rainfall is to be intercepted or treated (<1 year return period)
- 2) River regime protection: the discharge rate from the site will be 1l/s/ha and will cater for the 1 in 100 year event. This is as per the CPS and is stricter than the GDSDS.
- 3) Level of service (flooding) for the site:
 - a. No flooding on site, except where planned (30 year high estimated rainfall).
 - b. No internal property flooding (100 year high intensity rainfall event).
 - c. No internal flooding (100 year river event and critical duration for site).
 - d. No flooding off site except where specifically planned (100 year high intensity rainfall event).
- 4) River flood protection: Attenuation storage is provided with a discharge rate of 1l/s/ha. This is as per the CPS and is stricter than the GDSDS.

The mitigation measures proposed as part of the Site-Specific Flood Risk Assessment and the SuDS management train will allow the development to comply with the items 1-4 noted above.

3.2.6 Proposed Drainage Network

The surface water runoff from the proposed development is to be entirely separate from the development's foul sewerage network development drainage.

All surface water run-off from roof areas and hardstanding areas shall be collected 4no. networks that drain from north to south through the site. The networks have a restricted flow rate and will discharge to a series of engineered swales and a detention basin to the south of the site. The detention basin then ultimately discharges to the Ticknick Stream to the east of the site.

Please refer to PUNCH Drawings No.182186-020, 182186-021, and 182186-022 for details of the proposed surface water drainage system. The networks have been modelled using Causeway Flow. Calculation and results are included in Appendix C.

The proposed access route to the Priorsland site will be via the Luas Park & Ride Access Road (via the M50 Southbound Roundabout) and is an interim arrangement only.

Once the Castle Street extension becomes viable, and is completed in its entirety, Castle Street to the east of Priorsland will become the standard, on-going access route for the Priorsland development. This will have no effect on the proposed surface water drainage arrangement or discharge point for the site.

The SuDS management train is outlined in Section 3.3.

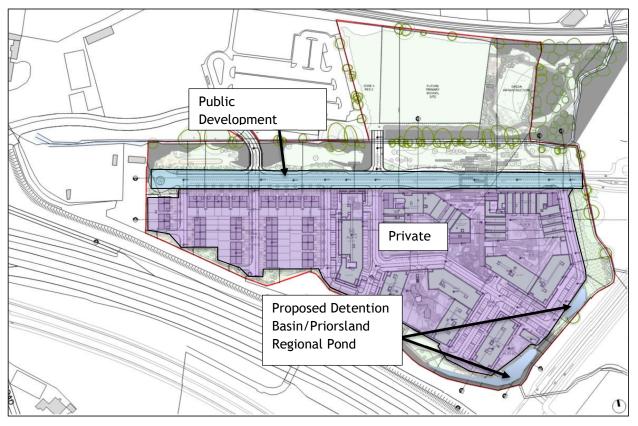
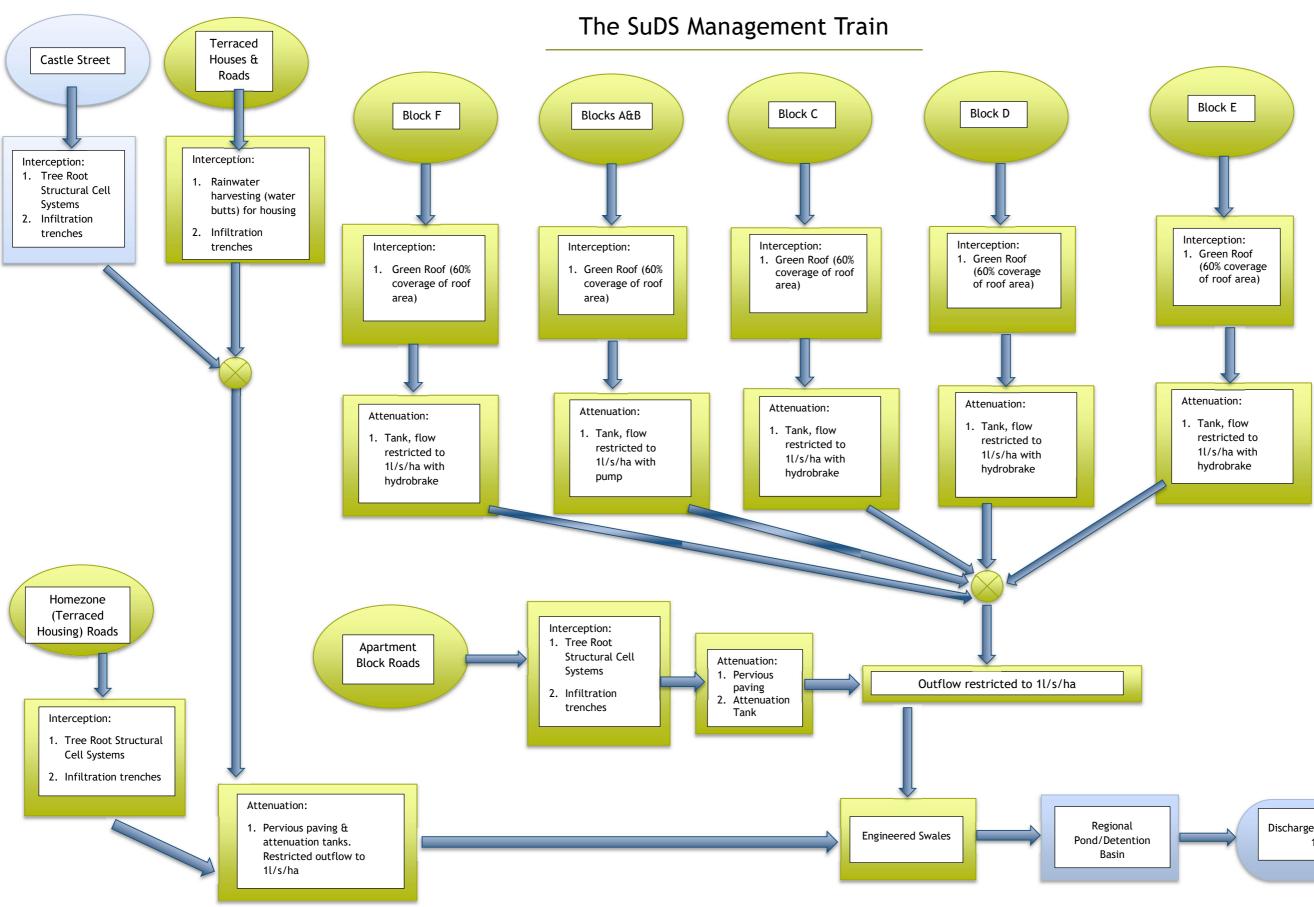
3.2.7 Suds Audit

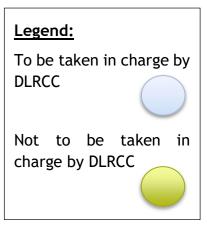
As part of the planning stage design development, an independent Stage 1 SuDS Audit was undertaken by JBA Consulting Engineers in accordance with the Dun Laoghaire Rathdown County Council (DLRCC) Water Services procedure. The results of this audit were considered and incorporated where appropriate into the initial planning submission. This report has been submitted with this application under separate cover.

3.3 Sustainable Drainage Systems

3.3.1 Sustainable urban Drainage Systems

SuDS have been proposed in accordance with CIRIA SuDS Manual 2015 C753 - The SuDS Manual. SuDS elements have been identified for each area based on their suitability. Chapter 4 of the CPS identifies SuDS elements that are suitable for public areas and SuDS elements that are suitable for private areas. The SuDS management train has been developed within these requirements. Castle Street will ultimately be taken in charge, and therefore the SuDS on Castle Street are in line with Measures in Public Realm Areas as per Section 4.1.2 of the CPS. The proposed terraced houses, apartment blocks and associated infrastructure to the south of Castle Street has been proposed as private development and therefore, SuDS in these locations are in line with Measures within Private Development Site Boundaries as per Section 4.1.2 of the CPS. Figure 3-3 outlines the separation of the public and private areas. The proposed detention basin/regional pond for the Priorsland site is proposed to the south of the site. All surface water that cannot be infiltrated within the Priorsland site will discharge to the proposed detention basin/regional pond for final treatment prior to being discharged to the Ticknick Stream.


Figure 3-3: Public vs Private areas within the Proposed Development

Please refer to the flow chart below indicating the proposed SuDS train for the development. The blue cells indicate proposals that will be within the public realm and will therefore be taken in charge. The green cells indicate proposals within the private development, and therefore will not be taken in charge.

Priorsland Cherrywood SHD Engineering Planning Report

Discharge to Ticknick Stream at 11/s/ha = 51/s

3.3.2 Surface Water Quantity Management

The proposed surface water network for the development has been modelled using Causeway Flow Software. Discharge from each of the plots and the overall development has been limited to 1l/s/ha. Please refer to Appendix C for outputs from WinDes demonstrating compliance with the discharge rate criteria. A 10% allowance for climate change has been included in the calculations.

The following sections indicate how each of the SuDS proposals contribute to reducing and restricting the discharge rate from the site.

3.3.2.1 Green Roofs

It is proposed to provide a large extent of both intensive and extensive green roofs within the proposed development. These shall be provided at roof level (Blocks A, B, C, D, E, F) and at podium level (Blocks A/B, C, E). Green roofs have been designed taking guidance from CIRIA Publications C644 - "Building Greener" and C697 - "The SUDS Manual".

Green roofs are widely recognised as an effective SuDS solution and an important tool in mitigating the adverse effects of development on rainfall run-off and for managing urban flood risk. Research in the UK by Kellagher and Lauchlan (2005)¹ and CIRIA C753 (The SuDS Manual) indicates that green roofs are effective in providing both attenuation and volume reduction in runoff for minor rainfall events.

It is proposed to use both Intensive and Extensive green roofs, which are defined as follows:

A. Intensive Green Roofs: These are typically landscaped environments with high amenity benefits, which include lawns, planters or trees and are usually accessible.

Topsoil Substrate Depth: 450mm - 1000mm

B. Extensive Green Roof: These are typically areas containing vegetation such as sedums and small grasses, which require less maintenance than other green roof types, and no permanent irrigation system.

Topsoil Substrate Depth: 100mm

The external areas at podium level include proposed landscaped areas, which shall be designed as an intensive green roof. The depth of the transfer slab located underneath the podium area will be reduced as much as possible in order to maximize the substrate depth available for the proposed green roofs. This area will act as an open green space for residents and a play area for children. This will improve water quality, reduces water quantity being discharged from the site, offers an amenity to residents and offers a biodiversity element to the site also (addressing the four pillars of SuDS design for the site).

There shall be an extensive sedum green roof provided at roof level for all the multi storey apartment blocks. The green roof areas proposed have been maximised, taking into account requirements for M&E plant at roof level. Where at the upper roof level there are areas that have not been covered with an extensive greenroof system, the surface water from these areas will be conveyed as far as possible to discharge to the intensive greenroof at podium level. Interception storage has therefore been maximised for roof areas on the site.

The overall site coverage for green roofs and soft landscaped areas (at podium level and upper roof level) is greater than the minimum required 60% of the roof area. Assuming 5% of the substrate depth is available for water storage, the green roofs shall provide interception storage for the first 10mm of rainfall, as required by the GDSDS criteria for River Water Quality Protection.

¹ Kellagher and Lauchlan (2005), Use of SuDS in high density developments

Please refer to PUNCH Drawings 182186-020, 182186-021 and 182186-022 for the locations of the green roofs, and Table 5 and Table 6 for interception storage calculations. Proposals should be read in conjunction with the Architect's and Landscape Architect's drawings for the proposed development.

3.3.2.2 Permeable Paving

IGSL Limited carried out site investigations in November 2018 at the Priorsland site. Testing was performed in accordance with BRE Digest 365 'Soakaway Design'. Infiltration rates in 4no. instances were between 0.00017m/min and 0.00097m/min. In one other instance an infiltration rate of 0m/min was observed. This was due to high rock in the location of the test. The measured infiltration rates were therefore moderate and infiltration SuDS systems were therefore deemed acceptable for this site.

Groundwater was encountered during the site investigation works at various depths in the boreholes, rising to within 0.6m of the existing surface level in places. Standpipes were installed in selected locations to facilitate long-term monitoring.

It should be noted however, that to facilitate the flood risk protection of the site, the site is proposed to be raised in level. Therefore, the proposed finished level of the site is circa 1m to 2m greater than the existing site levels. Therefore, groundwater should not be an issue for proposed infiltration elements.

Therefore, a pervious pavement system with partial infiltration is proposed, as per CIRIA C753 (The SuDS Manual). The base of the pervious pavement build-up will be permeable and a drainage network within the build-up will accommodate removal of excess water.

As proposals where surface water accesses the underground storage via gaps in interlocking paving will not be permitted, conventional impermeable surfaces will be provided. Grilles, gullies, or similar, that are easily maintained are proposed to carry the water from surface level and discharge it to the storage layer underneath.

CIRIA C753 (The SuDS Manual) notes that regarding interception design of pervious pavements, studies have shown that runoff typically does not occur from pervious pavements for rainfall events up to 5 mm. Please refer to Table 24.6 of CIRIA C753.

The subbase layer of the pervious pavements will provide attenuation for the proposed development. The pervious pavements have been modelled as part of the Causeway Flow software model produced for the development. The positive discharge from each zone has been limited to 1l/s/ha for the 1% AEP (1:100-year storm return period) storm, with 10% additional rainfall to allow for climate change.

3.3.2.3 Infiltration trenches

Proposed gullies along the development's roadways will discharge to a SuDS element for interception and treatment prior to entering the drainage network.

CIRIA C753 (The SuDS Manual) Table 24.6 notes that regarding interception design of infiltration trenches, roads drained by infiltration trenches can be considered to provide Interception, i.e. it can be assumed that there will be zero runoff from the first 5 mm rainfall for 80% of events during the summer and 50% in winter.

The infiltration trenches will then provide a level of attenuation storage within the voids in the stone within the trench. The infiltration trenches have been modelled as part of the Causeway Flow software model produced for the development. The positive discharge from each zone has been limited to 1l/s/ha for the 1% AEP (1:100-year storm return period) storm, with 10% additional rainfall to allow for climate change.

3.3.2.4 Engineered swales

The surface water network from the proposed terraced housing zone will discharge to a series of swales prior to outfalling to the detention basin/regional pond. Due to the moderately permeable nature of the site it is expected that a level of surface water can be filtrated to ground.

The engineered swales will provide a level of attenuation storage. The engineered swales have been modelled as part of the Causeway Flow software model produced for the development. The positive discharge from each zone has been limited to 1l/s/ha for the 1% AEP (1:100-year storm return period) storm, with 10% additional rainfall to allow for climate change.

3.3.2.5 Tree Root Structural Cell Systems

Proposed gullies along the development's roadways will discharge to a SuDS element for interception and treatment prior to entering the drainage network.

CIRIA C753 (The SuDS Manual) Table 24.6 notes that regarding interception design of Tree Root Structural Cell Systems, if unlined can be assumed to comply where the impermeable surface area is less than 5 times the vegetated surface area receiving the runoff. They can be designed to deliver Interception for larger areas, where suitable infiltration capacity is available.

The Tree Root Structural Cell Systems will then provide a level of attenuation storage within the voids in the stone within the trench. The Tree Root Structural Cell Systems have been modelled as part of the Causeway Flow software model produced for the development. The positive discharge from each zone has been limited to 1l/s/ha for the 1% AEP (1:100-year storm return period) storm, with 10% additional rainfall to allow for climate change.

3.3.2.6 Attenuation Tank

The proposed attenuation tanks within each of the apartment blocks, in conjunction with the proposed pump is sized to reduce the runoff from the site to 1l/s/ha for the 1% AEP (1:100 year storm return period) storm, with 10% additional rainfall to allow for climate change. The attenuation tanks are to be located under the basement or ground floor slab for each of the buildings.

3.3.2.7 Interception

Please refer to Table 5 and Table 6 below. Table 5 indicates the total contributing hardstanding area to be drained (50,403 m²) and the corresponding breakdown of areas from the total contributing hardstanding area captured by each SuDS type. Table 6 shows the total area that each proposed SuDS element could potentially cater for interception storage (56,632.5 m²). The area potential for interception storage calculated in Table 6 exceeds the required area to be intercepted in Table 5. Therefore, the interception requirement for the site is met. All areas are captured by an interception mechanism.

Table 5. Contributing Areas and Areas intercepted by Each Subs Type							
	Area Intercepted per SuDS Type						
Plot	Contributing Area from hard surfaces (m²)	Greenroof (m²)	Bio- Retention (m²)	Infiltration Trenches (m²)	Storage stone under paved surface and structured tree pit systems (m ²)	Swale and Detention ponds (m²)	
Block A Roof	2493	1567				926	
Block A Podium	1094		1094				
Block B Roof	2310	1384				926	
Block B Podium	809		809				
Podium between Block A and Block B	1410		264			1146	
Block C Roof	1870	1578				292	
Block C Podium	1598		1598				
Block D Roof	1010	805				205	
Block E Roof	2638	2131				507	
Block E Podium	1907		1907				
Block F Roof	1780	1351				429	
Block G Roof Areas	2988			1494	1494		
Block G Private Paved Areas	1763				1763		
Castle Street	6034			6034			
Shared Roads & Paving between plots	20566				20566		
TOTAL AREA (m ²)	50270	8816	5672	7528	23823	4431	

Table 5: Contributing Areas and Areas Intercepted by Each SuDS Type

Table 6: Interception Storage Provided Per SuDS Type

SuDS Type	Coverage Area of SuDS on plan (m²)	Potential Area SuDS Element can cater for Interception (m ²)	Reasoning
Greenroof	8816	8816	All surfaces that have green roofs can be assumed to be compliant for zero runoff from the first 5 mm rainfall for 80% of events during the summer and 50% in winter as per Table 24.6 of the CIRIA SuDS Manual 2015.
Infiltration Trenches	284.5	7528	Table 24.6 of the CIRIA SuDS Manual 2015 notes that roads drained by infiltration trenches can be considered to provide Interception and therefore be assumed to be compliant for zero runoff from the first 5 mm rainfall for 80% of events during the summer and 50% in winter as per Table 24.6 of the CIRIA SuDS Manual 2015. We are applying this principle for the terraced houses roofs that are connected to infiltration tranches.
Storage stone under paved surface and structured tree pit systems	5111	30666	Table 24.6 of the CIRIA SuDS Manual 2015 notes that where the infiltration capacity of the ground below the pavement is greater than $1 \times 10-6$ m/s, up to 5 times the permeable pavement area can be added as extra contributing area and therefore be assumed to be compliant for zero runoff from the first 5 mm rainfall for 80% of events during the summer and 50% in winter as per Table 24.6 of the CIRIA SuDS Manual 2015. SI information indicates the infiltration capacity for the Priorsland site is greater than $1 \times$ 10-6 m/s. Therefore, 5 times the permeable pavement area can be added as extra contributing area.
Swale	546	13650	Table 24.6 of the CIRIA SuDS Manual 2015 notes that any filter strip/swale that is unlined, has a gradient less than 1 in 100 and has an infiltration capability greater than $1 \times 10-6$ m/s can be assumed to comply with Interception for a contributing area up to 25 times the area, or a larger area where infiltration capacities and design characteristics allow. SI information indicates the infiltration capacity for the Priorsland site is greater than $1 \times 10-6$ m/s. The proposed swale has a gradient of 1:300. Therefore, 25 times the swale area can be added as extra contributing area.
TOTAL INTERCEPT FOR THE SITE (m ²)		56632.5	

3.3.3 Surface Water Quality Management

Typical key SuDS components permanence in reducing urban runoff contamination have been outlined in Table 7, and follow Chapter 26 of the CIRIA C753 (The SuDS Manual).

	Conce				
	TSS	Total cadmium	Total copper	Total zinc	Total nickel
	(mg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
Inflow from urban surface (average values)	20-114	0.2-0.6	6-22	29-112	3-8
Selected envi	ronmental sta	andards (Table	es 26.1 to 26.5	5):	
Surface water	25	0.66	66	506	206
Groundwater		0.1	1.5	5	15
0	utflows from S	SuDS compone	ents:		
Bioretention/tree pit systems	5-20	0.04-0.1	4-10	5-29	3-8
Swales	10-43	0.2-0.3	4-15	18-55	2-5
Detention basins	10-47	0.1-0.4	2-12	6-58	2-4
Permeable pavements	14-44	0.3-0.5	4-11	2-29	1-3
Filtration	7-26		3-10	19-59	
Oil separators	16-87		6-18	60-121	

Table 7: Performance of SuDS components in reducing urban runoff contamination

3.3.4 Amenity & Biodiversity

Many of the proposed SuDS will provide potential for amenity and biodiversity. The green roofs will provide an amenity area for resident of the apartment blocks. The sedum in the extensive and proposed planting in the intensive roofs provide opportunity for biodiversity.

The engineered swales and Tree Root Structural Cell Systems provide potential for biodiversity. The provision of soft landscaping associated with the swales and tree pit systems provides amenity for the residents also.

The proposed detention basin/regional pond provides great potential for biodiversity also, both for semiwet and wet environments.

Please refer to the Landscape drawings and reports for further details in relation to amenity and biodiversity provision through proposed landscaping throughout the development.

3.3.5 Operation & Maintenance

Typical key SuDS components operation and maintenance activities have been outlined in Table 8 and follow Chapter 32 of the CIRIA C753 (The SuDS Manual). A detailed operation and maintenance plan will be prepared for the Client at detailed design stage.

Regular maintenance is to be carried out typically every 1 to 3 months. Occasional maintenance is to be carried out every 6months to 1 year. Remedial maintenance is to be carried out as required.

Table 8: Typical key SuDS components operation and maintenance activities

Operation and maintenance activity	SuDS component							
	Green roofs	Pervious pavement	Infiltration trench	Swale//trees	Modular storage	Detention basin		
Regular maintenance								
Inspection	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Litter and debris removal		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Grass cutting			\checkmark	\checkmark		\checkmark		
Weed and invasive plant control	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		
Shrub management (including pruning)		\checkmark		\checkmark		\checkmark		
Shoreline vegetation management						\checkmark		
Aquatic vegetation management						\checkmark		
Occasional maintenance								
Sediment management	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Vegetation replacement	\checkmark			\checkmark		\checkmark		
Vacuum sweeping and brushing		\checkmark						
Remedial maintenance								
Structure rehabilitation /repair	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Infiltration surface reconditioning		\checkmark	\checkmark	\checkmark				

3.4 Surface Water Impact Assessment

3.4.1 The Existing Receiving Environment

The existing site is a greenfield site. The topography is very flat in nature. This site is a floodplain for the Carrickmines River, which dissects the site. Its existing use is low-level agriculture, used for grazing. The site is bounded to the south by the M50, to the east by the Ticknick Stream, to the North by the Luas Green line and the Carrickmines Luas carpark, and to the west by the Carrickmines South Roundabout.

3.4.2 Characteristics of the Proposed Development

The proposed development comprises the construction of terraced houses and 6no. apartment blocks within units denoted Blocks A, B, C, D, E and F. There will be retail and community facilities within the ground floor of Blocks A and B. Blocks A and B will have basement parking. Blocks C, E and F will have under croft parking.

3.4.3 Construction Impacts and Mitigation

During the construction phase of the proposed development there are several potential impacts that could impact the existing surface water quality negatively:

- 1. Elevated silt load caused by construction activities
- 2. Hydrocarbons from accidental spills

The contractor for the proposed works will be required to implement the following measures to protect the surface water:

- 1. Discharge permits & licenses
- 2. Preparing appropriate construction method statements
- 3. Settlement ponds
- 4. Bunding of hydrocarbons or any liquids that could adversely affect the receiving environment

These measures will be addressed within the Contractors method statements for the works.

3.4.4 Operational Impacts and Mitigation

Due to the low flow rate from the site (1l/s/ha) and the high quality of the surface water that will be discharge from the site through treatment from onsite SuDS, the operational impacts on the surrounding surface water will be positive.

4.0 Watermain Design

4.1 Existing Water Infrastructure

4.1.1 Existing Public Water Infrastructure

The following existing public watermain infrastructure exists adjacent to the development

- 300mm nominal diameter HDPE watermain is located at Castle Street to the east of the Ticknick Stream.
- 33" trunk watermain running from south to north through the site boundary

Please refer to Appendix A for Irish Water Record drawings illustrating the existing watermain arrangement.

4.2 Proposed Water Infrastructure

4.2.1 Proposed Water Supply Connection

It is proposed to provide a new 225mm OD diameter connection to the existing 300mm nominal diameter HDPE watermain is located at Castle Street to the east of the Ticknick Stream, to facilitate the proposed development. The new connection is to be provided to cater for the proposed development and associated loading. This supply arrangement is as per Chapter 4 of the Cherrywood Planning Scheme.

This water supply connection will service the on-site fire, sprinkler and potable water supply.

A bulk water meter shall be provided for each of the apartment blocks. The apartments will all be metered internally. Boundary boxes shall be supplied for each of the proposed terraced houses. The watermain layout has been designed in accordance with *"Irish Water Code of Practice for Water Infrastructure"*. All watermains are to be constructed in accordance with Irish Water and the Local Authority's requirements.

Please refer to PUNCH Drawing No. 182186-030 for details of the proposed watermain layout.

4.2.2 Irish Water Confirmation of Feasibility

Two Confirmation of Feasibility letters have been obtained from Irish Water for the connections for the proposed development. The first, obtained in February 2020 confirms a development of 454no. units can connect to the water and wastewater public infrastructure without upgrades being required to the public networks. The second, obtained in March 2020 confirms a development of 2,902no. units can connect to the water and wastewater public infrastructure without upgrades being required to the public networks. These Confirmation of Feasibility letters have both been included in Appendix E.

4.2.3 Water Supply Demand

Irish Water's Code of Practice for Water Infrastructure was used to calculate the water demand for the proposed development. On this basis, the following parameters were used:

- An average daily domestic demand per-capita consumption of 150 litres/person/day
- Domestic occupancy ratio of 2.7 persons per dwelling
- An average day/peak week demand of 1.25 times the average daily domestic demand
- A peak demand for sizing of the pipe network of 5.0 times the average day/ peak week demand (for network sizing purposes only).

Table 9 below presents the water supply demands for the development.

The total daily flow (DWF) was calculated as 2.564 l/s with a peak flow of 3.205 l/s. The daily water supply loading is 221.516 m^3 .

Source	Quantity	Unit	Flow	Flow unit	Daily	PE (@ 150 I/person /day)	DWF	DWF	Averag e day/pea k week deman d	Peak
	quantity	onit	TIOW		(litres/ day)		m³/day	litres/ sec	litres/ sec (@1.25 x DWF)	litres/ sec (@5.0 x DWF)
Domestic	443	units	446	l/unit/day	197578	1317.19	197.578	2.287	2.858	11.434
Supermarket	1306	m²	400	l/day/100m²	5224	34.83	5.224	0.060	0.076	0.302
Retail	715	m²	400	l/day/100m ²	2860	19.07	2.860	0.033	0.041	0.166
Non-retail	213	m²	300	l/day/100m²	639	4.26	0.639	0.007	0.009	0.037
Creche	513	m²	750	l/day/100m ²	3848	25.65	3.848	0.045	0.056	0.223
Gym	155	m²	750	l/day/100m²	1163	7.75	1.163	0.013	0.017	0.067
Residential Facilities	551.8	m²	750	l/day/100m²	4139	27.59	4.139	0.048	0.060	0.239
High Intensity Employment	708	m²	750	l/day/100m²	5310	35.40	5.310	0.061	0.077	0.307
Community Facilities	252	m²	300	l/day/100m²	756	5.04	0.756	0.009	0.011	0.044
Total					221516	1476.77	221.516	2.564	3.205	12.819

Table 9: Water Consumption Rates

4.2.4 Water Reduction Measures

To reduce the water demand on Local Authority water supplies and to reduce the water consumption of the development, water conservation measures will be incorporated in the sanitary facilities throughout the development, e.g. dual flush toilets, monobloc low volume push taps and waterless urinals.

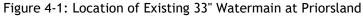
4.2.5 Compliance with CPS Chapter 4

The proposed works are in compliance with the requirements of Chapter 4 of the CPS.

Specific Objective	Response				
PI 1 In common with all development in the Dublin region, development in the county is dependent on an adequate supply of water for the Dublin region. It is an objective to liaise with the Department of Environment Community and Local Government (DECLG) and Dublin City Council on regional water supply availability.	Irish Water have confirmed via the Pre-Connection Enquiry process that the development can be supported by the public watermain network.				
PI 2 It is an objective to reach agreement with Dublin City Council on measures to reprioritise water allocation to Rathmichael reservoir. This may also involve installation of a new strategic watermain to Shankill to reduce over-reliance on Roundwood Water Treatment Works.	N/A. This is beyond the boundary of the proposed development's footprint.				
PI 3 Development beyond 4ml/day capacity in the Planning Scheme and other new developments in the supply area (including Shankill, Shanganagh and Woodbrook) will require construction of the Old Connaught Woodbrook Water Supply Scheme. It is an objective to progress this scheme which is currently awaiting approval of the DECLG.	N/A. This is beyond the development's scope as it pertains to strategic infrastructure.				
PI 4 It is an objective to ensure a planned approach is taken to the local distribution network within the zone to facilitate co- ordinated development. To support the use of water saving systems and landscaping. Where national standards are adopted, under the Water Services Act	Landscaped areas have been maximised where possible. Rainwater harvesting in the form of water butts are proposed for the terraced houses within the development. To reduce the water demand on Local Authority water supplies and to reduce the water consumption of the development, water conservation measures will be incorporated in the sanitary facilities throughout the development, e.g. dual flush toilets, monobloc low volume push taps and waterless urinals.				

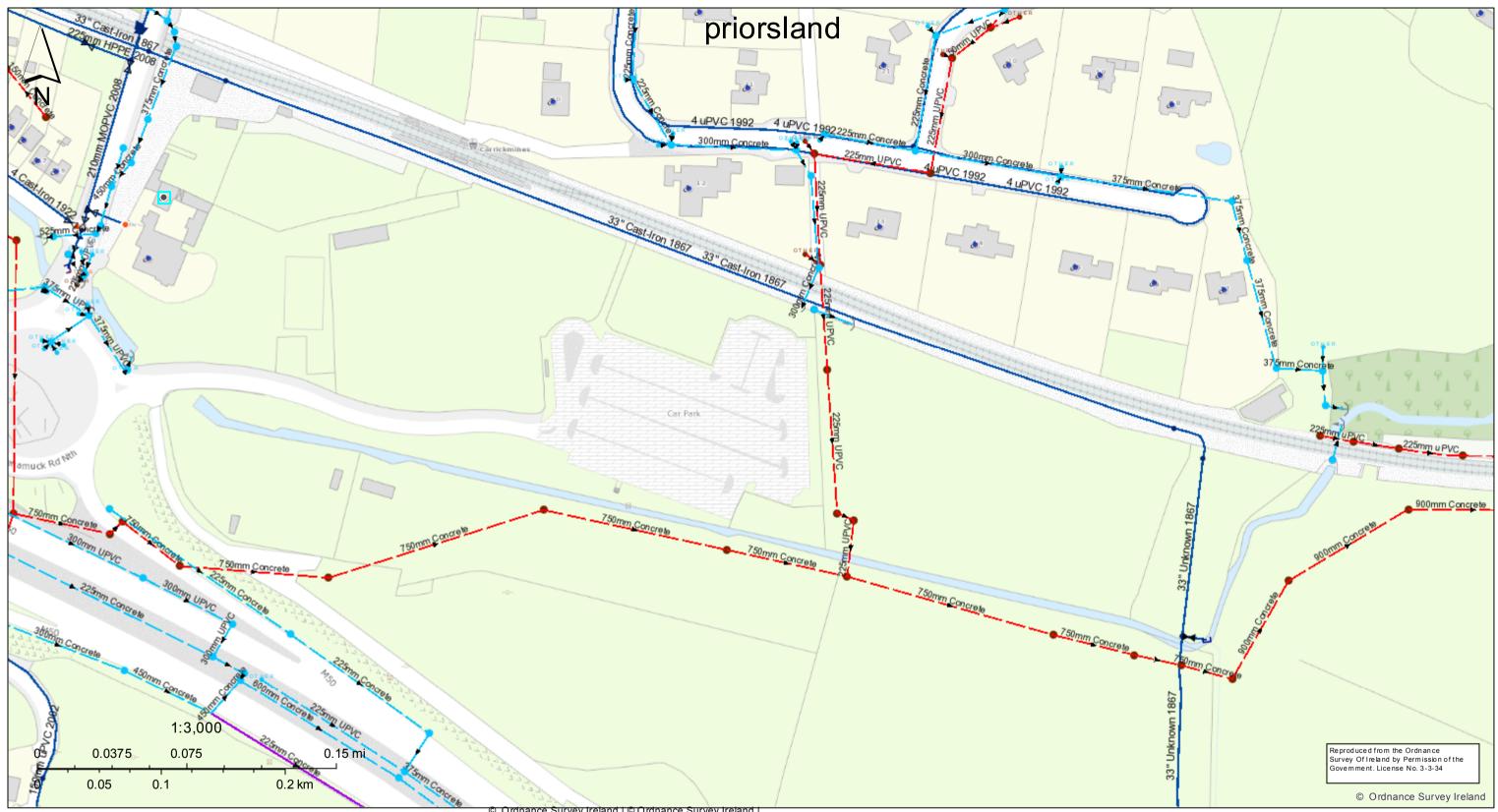
an early stage to secure supply.

2007 or otherwise, for rainwater harvesting and/or greywater recycling for use within buildings, these will be incorporated to the maximum practicable extent.	
PI 5 It is an objective to replace a short portion of critical trunk main from Bride's Glen Road at	N/A. This is beyond the development's scope as it pertains to strategic infrastructure.


4.3 Existing 33" Watermain

The existing 33" watermain that runs from south to north along the eastern border of the Priorsland site will be cordoned off for protection during the development of the Priorsland site. The proposed construction access route to the Priorsland site will be via the Luas Park & Ride Access Road (via the M50 Southbound Roundabout) and is an interim arrangement only. This interim access represents an 'alternative use of infrastructure' pursuant to the adopted amendment to the SDZ which states the following in Section 7.2.2:

"However, it is acknowledged that there may be exceptional or unforeseen circumstances beyond the reasonable control of an individual developer or the local authority, whereby a piece of infrastructure necessary to progress the development of a Growth Area cannot be provided in the short to medium term (circa 0-3 years). In such instances, there may be an appropriate alternative utilising other infrastructure as provided for under the Planning Scheme, as an interim measure to facilitate the early delivery of housing, and early engagement with the Development Agency will be an essential prerequisite."


Once the Castle Street extension into the Priorsland site becomes viable, and the existing 33" watermain is diverted by others, Castle Street will become the standard, on-going access route for the Priorsland development. The layout associated with the proposed development covered by this planning application does not require vehicles to traverse the existing 33" watermain. Please refer to drawing 182186-031 for an illustrative layout of this future diversion.

Appendix A Existing Services Record Drawings

© Ordnance Survey Ireland | © Ordnance Survey Ireland

Legend Stormwater Gravity Mains (Irish Water Owned) Storm Fittings Storm Culverts Sewer Gravity Mains (Non-Irish Water owned) Lamphole - Surface YC Vent/Col Combined Storm Clean Outs • Standard Stormwater Gravity Mains (Non-Irish Water Owned) Other; Unknown Foul Sewer Gravity Mains (Irish Water owned) Other; Unknown ---- Surface Storm Discharge Points -Combined - Overflow Storm Inlets Storm Manholes -> Outfall Gully Foul Un known Cascade CC C Overflow Standard Overflow 8 Catchpit ١. Soakaway Other; Unknown Un known Hatchbox Other: Unknown

1/16/2019 10:57:03 AM

Irish Water gives this information as to the position of its underground network as a general guide only on the strict understanding that it is based on the best available information provided by each Local Authority in Ireland. It should not be relied upon in the event of excavations or other works being carried out in the vicinity of the network. The onus is on the parties carrying out the works to ensure the exact location of the network is identified prior to mechanical works being carried out. Service pipes are not generally shown but their presence should be anticipated. © Irish Water

"Gas Networks Ireland (GNI), their affiliates and assigns, accept no responsibility for any information contained in this document concerning location and technical designation of the gas distribution and transmission network ("the Information"). Any representations and warranties express or implied, are excluded to the fullest extent permitted by law. No liability shall be accepted for any loss or damage including, without limitation, direct, indirect, special, incidental, punitive or consequential loss including loss of profits, arising out of or in connection with the use of the Information (including maps or mapping data). NOTE: DIAL BEFORE YOU DIG Phone 1850 427 747 or e-mail dig@gasnetworks.ie - The actual position of the gas/electricity distribution and transmission network must be verified on site before any mechanical excavating takes place. If any mechanical excavation is proposed, hard copy maps must be requested from GNI re gas. All work in the vicinity of the gas distribution and transmission network must be completed in accordance with the current edition of the Health & Safety Authority publication, 'Code of Practice For Avoiding Danger From Underground Services' which is available from the Health and Safety Authority (1890 28 93 89) or can be downloaded free of charge at www.hsa.ie."

priorsland - 2

1/16/2019 11:04:09 AM

© Ordnance Survey Ireland | © Ordnance Survey Ireland |

Legend

Stormwater Gravity Mains (Irish Water Owned)

- --- Surface
- Stormwater Gravity Mains (Non-Irish Water Owned)
- --- Surface
- Storm Manholes
- Cascade -
- Catchpit
- <u> 1</u>2 Hatchbox
- Lamphole
- ÷ Standard
- t = 1Other; Unknown

Storm Inlets

- Gully
- Standard
- Other; Unknown

- Storm Fittings
 - Vent/Col
 - Other; Unknown
- Storm Discharge Points
 - Outfall ÷
 - Overflow
 - $\frac{1}{2}$ Soakaway
- Other; Unknown
- Storm Culverts
- Storm Clean Outs
- Combined
- Foul
- Overflow
- Unknown

- Sewer Gravity Mains (Non-Irish Water owned)
- --- Combined
- Foul
- --- Overflow
- ---- Unknown
- Sewer Pressurized Mains (Irish Water owned)
 - Combined
- -- Foul
- Overflow
- Unknown

Sewer Gravity Mains (Irish Water owned) Sewer Pressurized Mains (Non-Irish Water owned)

- Combined
 - ---- Foul
 - Overflow
 - Unknown

Irish Water gives this information as to the position of its underground network as a general guide only on the strict understanding that it is based on the best available information provided by each Local Authority in Ireland. It should not be relied upon in the event of excavations or other works being carried out in the vicinity of the network. The onus is on the parties carrying out the works to ensure the exact location of the network is identified prior to mechanical works being carried out. Service pipes are not generally shown but their presence should be anticipated.

"Gas Networks Ireland (GNI), their affiliates and assigns, accept no responsibility for any information contained in this document concerning location and technical designation of the gas distribution and transmission network ("the Information"). Any representations and warranties express or implied, are excluded to the fullest extent permitted by law. No liability shall be accepted for any loss or damage including, without limitation, direct, indirect, special, incidental, punitive or consequential loss including loss of profits, arising out of or in connection with the use of the Information (including maps or mapping data). NOTE: DIAL BEFORE YOU DIG Phone 1850 427 747 or e-mail $dig@gasnetworks.ie-\ The\ actual\ position\ of\ the\ gas/electricity\ distribution\ and$ transmission network must be verified on site before any mechanical excavating takes place. If any mechanical excavation is proposed, hard copy maps must be requested from GNI re gas. All work in the vicinity of the gas distribution and transmission network must be completed in accordance with the current edition of the Health & Safety Authority publication, 'Code of Practice For Avoiding Danger From Underground Services' which is available from the Health and Safety Authority (1890 28 93 89) or can be downloaded free of charge at www.hsa.ie."

Legend ** Water Hydrants Hydrant Function Fire Hydrar ш Сар Other Fittings Water Distribution Mains Owned By Distribution Water Mair Trunk Water Main Last edited: 13/09/2018 1:1,000 at A0 Metres 0 25 50 100 1. No part of this drawing may be reproduced or transmitted in any form or stored in any retrieval system of any nature without the written permission of Irish Water as copyright holder except as agreed for use on the project for which the document was originally issued.

By the of the bent in the project for which the document was originary issued. 2. Whilst every care has been taken in its compilation, Irish Water gives this information as to the position of its underground network as a general guide only on the strict understanding that it is based on the best available information provided by each Local Authority in reland to Irish Water. Irish Water can assume on responsibility for and give no guarantees, undertakings or warranties concerning the accuracy, completeness or up to date nature of the information should not be relied upon in the event of excavations or any other works being carried out in the vicinity of the Irish Water canderground network. The onus is on the parties carrying out excavations or any other works to ensure the exact location of the Irish Water underground network is identified prior to excavations or any other works being carried out. Service connection pipes are not generally shown but their presence should be anticipated.

duced from the Ordr

Appendix B Rainfall Supporting Data

	Met Eireann											
Return	Period	Rainfall	Depths	for	sliding	Durations						
Irish	Grid:	Easting:	322331	, Noi	thing:	223905,						

	Interval				Years								
DURATION	6months, lyear,	2, 3,	4, 5,	10,	20,	30,	50,	75,	100,	150,	200,	250,	500,
5 mins	2.5, 3.6,	4.2, 5.2, 5.	8, 6.3,	7.9,	9.8,	11.1,	12.9,	14.5,	15.7,	17.7,	19.2,	20.5,	N/A ,
10 mins	3.5, 5.1,	5.9, 7.2, 8.	1, 8.8,	11.1,	13.7,	15.4,	17.9,	20.2,	21.9,	24.6,	26.7,	28.5,	N/A ,
15 mins	4.1, 5.9,	6.9, 8.5, 9.	5, 10.3,	13.0,	16.1,	18.2,	21.1,	23.7,	25.8,	29.0,	31.5,	33.5,	N/A ,
30 mins	5.4, 7.8,	9.0, 10.9, 12.	2, 13.2,	16.5,	20.2,	22.7,	26.3,	29.4,	31.9,	35.7,	38.6,	41.1,	N/A ,
1 hours	7.2, 10.1,	11.7, 14.0, 15.	6, 16.9,	20.9,	25.5,	28.5,	32.7,	36.5,	39.4,	43.9,	47.4,	50.3,	N/A ,
2 hours	9.5, 13.2,	15.2, 18.1, 20.	0, 21.6,	26.5,	32.0,	35.7,	40.7,	45.2,	48.7,	54.0,	58.2,	61.6,	N/A ,
3 hours	11.2, 15.4,	17.6, 21.0, 23.	2, 24.9,	30.4,	36.6,	40.7,	46.3,	51.3,	55.2,	61.0,	65.6,	69.3,	N/A ,
4 hours	12.6, 17.2,	19.7, 23.3, 25.	7, 27.6,	33.6,	40.3,	44.7,	50.7,	56.1,	60.2,	66.5,	71.4,	75.4,	N/A ,
6 hours	14.8, 20.1,	22.9, 27.0, 29.	7, 31.8,	38.6,	46.1,	50.9,	57.7,	63.6,	68.2,	75.1,	80.5,	84.9,	N/A ,
9 hours	17.4, 23.5,	26.6, 31.3, 34.	4, 36.7,	44.3,	52.7,	58.1,	65.6,	72.2,	77.2,	84.9,	90.7,	95.6,	N/A ,
12 hours	19.6, 26.2,	29.7, 34.7, 38.			57.9,	63.8,	71.8,	78.9,		92.5,		104.0,	N/A ,
18 hours	23.0, 30.6,	34.5, 40.3, 44.	0, 46.9,		66.3,	72.7,	81.7,	89.5,	95.4,	104.5,	111.4,	117.0,	N/A ,
24 hours	25.9, 34.2,	38.5, 44.7, 48.	8, 52.0,	62.0,	72.9,	79.9,	89.5,	97.8,	104.2,	113.9,	121.3,	127.3,	148.0,
2 days	32.5, 42.1,	46.9, 53.9, 58.			84.7,	92.1,		111.2,	117.8,			141.7,	
3 days	37.9, 48.5,	53.8, 61.4, 66.			94.3,	102.2,	113.0,	122.2,	129.2,	139.6,	147.5,	154.0,	175.8,
4 days	42.7, 54.1,	59.8, 67.9, 73.		89.5,	102.7,	111.0,	122.2,	131.8,	139.1,	149.9,	158.1,	164.8,	187.2,
6 days	51.1, 63.9,	70.3, 79.3, 85.		103.0,									
8 days	58.5, 72.6,	79.5, 89.3, 95.		114.8,									
10 days	65.4, 80.6,	88.0, 98.4, 105.			,								,
12 days	71.8, 88.0,	95.9, 106.9, 114.					,		,	,		,	
16 days	83.8, 101.7,	110.4, 122.6, 130.											
20 days	94.9, 114.5,	123.9, 137.0, 145.											
25 days	108.0, 129.4,	139.6, 153.8, 162.	8, 169.5,	189.9,	210.8,	223.7,	240.7,	255.0,	265.6,	281.3,	292.9,	302.2,	333.1,

N/A Data not available

NOTES:

These values are derived from a Depth Duration Frequency (DDF) Model

For details refer to:

'Fitzgerald D. L. (2007), Estimates of Point Rainfall Frequencies, Technical Note No. 61, Met Eireann, Dublin', Available for download at www.met.ie/climate/dataproducts/Estimation-of-Point-Rainfall-Frequencies_TN61.pdf

M5-60 = 16.9, Ratio R = 16.9/62 = 0.273

Appendix C Surface Water Calculations - Causeway Flow Modelling

Design Settings

Rainfall Methodology	FSR	Maximum Time of Concentration (mins)	30.00
Return Period (years)	5	Maximum Rainfall (mm/hr)	100.0
Additional Flow (%)	0	Minimum Velocity (m/s)	0.80
FSR Region	Scotland and Ireland	Connection Type	Level Inverts
M5-60 (mm)	16.900	Minimum Backdrop Height (m)	0.000
Ratio-R	0.273	Preferred Cover Depth (m)	1.200
CV	0.750	Include Intermediate Ground	\checkmark
Time of Entry (mins)	4.00	Enforce best practice design rules	x

<u>Nodes</u>

Name	Area (ha)	T of E (mins)	Add Inflow (I/s)	Cover Level (m)	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)
S10-0	0.037	4.00	•••••	65.417	1200	722125.614	724001.592	1.500
S10-1	0.053	4.00		65.138	1200	722179.953	723990.796	1.589
S10-2	0.103	4.00		65.022	1200	722177.846	723979.532	1.530
S10-3	0.057	4.00		64.858	1200	722171.846	723949.595	1.536
S10-4	0.179	4.00		64.575	1350	722162.627	723903.099	1.433
S10-5	0.003	4.00		64.304	1350	722190.066	723897.660	1.302
S20-0	0.036	4.00		65.402	1200	722109.621	723993.139	1.602
S20-1	0.154	4.00		65.043	1200	722099.412	723942.074	1.591
S20-2	0.000			65.090	1200	722108.477	723934.617	1.746
S20-3	0.000			64.565	1200	722167.730	723893.220	1.509
S10-6	0.001	4.00		64.565	1200	722212.564	723896.896	1.815
S30-0	0.051	4.00		65.060	1200	722195.584	723987.616	1.530
S30-1	0.084	4.00		64.802	1200	722246.055	723977.524	1.615
S30-2	0.071	4.00		64.586	1350	722243.377	723965.091	1.483
S30-3	0.226	4.00		64.431	1350	722228.039	723888.579	1.719
S10-7	0.001	4.00		64.406	1200	722229.041	723882.276	1.736
S40-0	0.025	4.00		64.790	1200	722254.624	723970.066	1.425
S40-1	0.090	4.00		64.514	1200	722289.701	723963.352	1.378
S41-0	0.000	4.00	0.5	64.445	1200	722268.568	723899.252	1.425
S40-2	0.123	4.00		64.526	1200	722277.468	723897.394	1.656
S40-3	0.094	4.00		64.253	1200	722255.484	723857.862	1.559
S10-8	0.017	4.00		64.253	1500	722258.809	723853.218	1.747
Swale1a				63.800	1500	722292.204	723797.676	1.479
swale1b				63.600	1500	722308.685	723780.912	1.338
S50-0	0.000	4.00	0.8	64.355	1200	722297.008	723884.448	1.425
S50-1	0.000		0.6	64.182	1200	722322.288	723880.846	1.420
S50-2	0.124	4.00		64.084	1200	722338.483	723878.539	1.428
S51-0	0.000	4.00	0.6	63.654	1200	722401.250	723808.254	1.025
S51-1	0.000			63.823	1200	722382.442	723826.983	1.350
S52-0	0.000	4.00	0.6	63.697	1200	722391.405	723846.814	1.197
S51-2	0.149	4.00		63.664	1200	722381.967	723836.474	1.230
S50-3	0.155	4.00		63.695	1350	722378.733	723839.603	1.275
S50-4	0.161	4.00		63.966	1350	722327.423	723786.985	1.791
S10-9	0.113	4.00		63.300	1500	722346.209	723762.258	1.205
S10-10	0.066	4.00		63.373	1500	722409.594	723784.346	1.470
S60-0	0.025	4.00		64.457	1200	722297.617	723961.752	1.407
S60-1	0.074	4.00		64.202	1200	722336.708	723953.939	1.449
S60-2	0.074	4.00		63.881	1200	722373.388	723946.612	1.235
S60-3	0.111	4.00		63.578	1200	722418.818	723937.051	1.253
S60-4	0.111	4.00		63.300	1350	722461.907	723928.206	1.101
S60-5	0.037	4.00		63.181	1350	722461.834	723909.996	1.125

Flow+ v10.2 Copyright © 1988-2022 Causeway Technologies Ltd

Ι	Michael Punch and Partners Lt	File: 182186 Priorsland 2022 SI	Page 2
		Network: Storm Proposed	Foul Water Drainage
		Marie Claire Daly	Priorsland Residential
		19/03/2020	Dublin

<u>Nodes</u>

Name	Area (ha)	T of E (mins)	Add Inflow (I/s)	Cover Level (m)	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)
S60-6	0.063	4.00		63.346	1350	722462.183	723838.360	1.382
S61-0		4.00		63.558	1200	722392.344	723826.054	1.258
S61-1	0.042	4.00		63.347	1200	722415.747	723803.795	1.237
S61-2	0.000			63.325	1200	722422.109	723798.002	1.403
S60-7	0.045	4.00		63.324	1350	722432.434	723808.771	1.465
S10-11	0.000			63.485	1350	722437.143	723805.561	1.747
S10-12	0.000			63.200	1500	722477.814	723837.284	1.601
S10-13	0.000			63.143	1500	722482.147	723863.703	1.633
Stream				63.000	1200	722484.447	723867.690	2.065

<u>Links</u>

Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)
S10.000	S10-0	S10-1	55.209	0.600	63.917	63.549	0.368	150.0	300	4.72	64.3
S10.001	S10-1	S10-2	11.455	0.600	63.549	63.492	0.057	200.0	375	4.87	63.6
S10.002	S10-2	S10-3	34.043	0.600	63.492	63.322	0.170	200.0	375	5.31	61.6
S10.003	S10-3	S10-4	36.060	0.600	63.322	63.142	0.180	200.0	375	5.78	59.7
S10.004	S10-4	S10-5	27.973	0.600	63.142	63.002	0.140	200.0	375	6.15	58.3
S10.005	S10-5	S10-6	50.411	0.600	63.002	62.750	0.252	200.0	375	6.81	55.9
S20.000	S20-0	S20-1	52.141	0.600	63.800	63.452	0.348	150.0	225	4.82	63.8
S20.001	S20-1	S20-2	12.009	0.600	63.452	63.344	0.108	110.9	225	4.98	63.1
S20.002	S20-2	S20-3	71.913	0.600	63.344	63.056	0.288	250.0	300	6.19	58.1
S20.003	S20-3	S10-6	44.958	0.600	63.056	62.872	0.184	245.0	300	6.94	55.5
S10.006	S10-6	S10-7	22.143	0.600	62.750	62.676	0.074	300.0	375	7.29	54.4
S30.000	S30-0	S30-1	51.491	0.600	63.530	63.187	0.343	150.0	300	4.67	64.5
S30.001	S30-1	S30-2	12.558	0.600	63.187	63.103	0.084	150.0	375	4.81	63.8
S30.002	S30-2	S30-3	78.140	0.600	63.103	62.712	0.391	200.0	375	5.83	59.5
S30.003	S30-3	S10-7	6.254	0.600	62.712	62.670	0.042	150.0	375	5.90	59.2
S10.007	S10-7	S10-8	53.155	0.600	62.670	62.506	0.164	325.0	450	8.08	52.0
S40.000	S40-0	S40-1	34.328	0.600	63.365	63.136	0.229	149.9	225	4.54	65.2

Name	Vel (m/s)	Cap (l/s)	Flow (I/s)	US Depth (m)	DS Depth (m)	Σ Area (ha)	Σ Add Inflow (I/s)	Pro Depth (mm)	Pro Velocity (m/s)
S10.000	1.281	90.6	6.4	1.200	1.289	0.037	0.0	54	0.747
S10.001	1.277	141.1	15.5	1.214	1.155	0.090	0.0	83	0.848
S10.002	1.277	141.1	32.2	1.155	1.161	0.193	0.0	121	1.042
S10.003	1.277	141.1	40.4	1.161	1.058	0.250	0.0	137	1.106
S10.004	1.277	141.1	67.7	1.058	0.927	0.429	0.0	183	1.264
S10.005	1.277	141.1	65.5	0.927	1.440	0.432	0.0	180	1.255
S20.000	1.065	42.3	6.2	1.377	1.366	0.036	0.0	58	0.768
S20.001	1.241	49.3	32.5	1.366	1.521	0.190	0.0	133	1.321
S20.002	0.990	70.0	29.9	1.446	1.209	0.190	0.0	137	0.952
S20.003	1.000	70.7	28.6	1.209	1.393	0.190	0.0	133	0.949
S10.006	1.041	114.9	91.8	1.440	1.355	0.623	0.0	255	1.151
S30.000	1.281	90.6	8.9	1.230	1.315	0.051	0.0	63	0.822
S30.001	1.477	163.1	23.4	1.240	1.108	0.135	0.0	96	1.061
S30.002	1.277	141.1	33.2	1.108	1.344	0.206	0.0	123	1.051
S30.003	1.477	163.1	69.3	1.344	1.361	0.432	0.0	170	1.418
S10.007	1.122	178.4	148.9	1.286	1.297	1.056	0.0	316	1.250
S40.000	1.065	42.4	4.4	1.200	1.153	0.025	0.0	49	0.693

Flow+ v10.2 Copyright © 1988-2022 Causeway Technologies Ltd

CAUSEWAY 🛟			ael Punch	and Partner	Ne Ma	File: 182186 Priorsland 2022 SI Network: Storm Proposed Marie Claire Daly 19/03/2020				Page 3 Foul Water Drainage Priorsland Residential Dublin			
					<u>Links</u>								
Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)		
S40.001	S40-1	S40-2	77.227	0.600	63.136	62.870	0.266	290.0	225	6.22	58.0		
S41.000	S41-0	S40-2	9.092	0.600	63.020	62.959	0.061	150.0	225	4.14	67.3		
S40.002	S40-2	S40-3	29.955	0.600	62.870	62.694	0.176	170.0	225	6.72	56.2		
S40.003	S40-3	S10-8	19.475	0.600	62.694	62.579	0.115	170.0	300	6.99	55.3		
S10.008	S10-8	Swale1a	64.808	0.600	62.506	62.321	0.185	350.0	500	9.02	49.6		
Swale1a	Swale1a	swale1b	23.509	0.600	62.321	62.262	0.059	400.0	500	9.38	48.7		
swale1b	swale1b	S10-9	41.905	0.600	62.262	62.157	0.105	400.0	500	10.03	47.2		
S50.000	S50-0	S50-1	25.836	0.600	62.930	62.762	0.168	154.2	225	4.41	65.8		
S50.001	S50-1	S50-2	16.408	0.600	62.762	62.656	0.106	154.2	225	4.67	64.5		
S50.002	S50-2	S50-3	55.990	0.600	62.656	62.469	0.187	300.0	225	5.92	59.1		
S51.000	S51-0	S51-1	26.543	0.600	62.629	62.473	0.156	170.0	225	4.44	65.7		
S51.001	S51-1	S51-2	9.503	0.600	62.473	62.434	0.039	245.0	300	4.60	64.9		
S52.000	S52-0	S51-2	14.364	0.600	62.500	62.452	0.048	300.0	300	4.27	66.6		
S51.002	S51-2	S50-3	4.226	0.600	62.434	62.420	0.014	300.0	375	4.67	64.5		
S50.003	S50-3	S50-4	73.494	0.600	62.420	62.175	0.245	300.0	375	7.09	55.0		
S50.004	S50-4	S10-9	27.928	0.600	62.175	62.095	0.080	350.0	375	7.58	53.5		
S10.009	S10-9	S10-10	67.123	0.600	62.095	61.903	0.192	350.0	600	10.89	45.4		
S10.010	S10-10	S10-11	65.926	0.600	61.903	61.738	0.165	400.0	400	12.06	43.2		
S60.000	S60-0	S60-1	77.269	0.600	63.050	62.753	0.297	260.0	300	5.33	61.5		
S60.001	S60-1	S60-2	37.405	0.600	62.753	62.646	0.107	350.0	300	6.07	58.5		
S60.002	S60-2	S60-3	96.319	0.600	62.646	62.325	0.321	300.0	300	7.85	52.7		
S60.003	S60-3	S60-4	43.987	0.600	62.325	62.199	0.126	350.0	300	8.73	50.3		
S60.004	S60-4	S60-5	49.919	0.600	62.199	62.056	0.143	350.0	375	9.60	48.2		
S60.005	S60-5	S60-6	32.081	0.600	62.056	61.964	0.092	350.0	375	10.15	46.9		

Name	Vel (m/s)	Cap (l/s)	Flow (I/s)	US Depth (m)	DS Depth (m)	Σ Area (ha)	Σ Add Inflow (I/s)	Pro Depth (mm)	Pro Velocity (m/s)
S40.001	0.763	30.3	18.1	1.153	1.431	0.115	0.0	125	0.795
S41.000	1.065	42.3	0.5	1.200	1.342	0.000	0.5	17	0.357
S40.002	1.000	39.7	36.8	1.431	1.334	0.238	0.5	172	1.131
S40.003	1.203	85.0	50.3	1.259	1.374	0.332	0.5	166	1.251
S10.008	1.155	226.8	189.2	1.247	0.979	1.405	0.5	351	1.286
Swale1a	1.080	212.0	185.9	0.979	0.838	1.405	0.5	365	1.211
swale1b	1.080	212.0	180.3	0.838	0.643	1.405	0.5	356	1.206
S50.000	1.050	41.8	0.8	1.200	1.195	0.000	0.8	22	0.410
S50.001	1.050	41.8	1.4	1.195	1.203	0.000	1.4	29	0.492
S50.002	0.750	29.8	21.3	1.203	1.001	0.124	1.4	141	0.813
S51.000	1.000	39.7	0.6	0.800	1.125	0.000	0.6	19	0.358
S51.001	1.000	70.7	0.6	1.050	0.930	0.000	0.6	20	0.306
S52.000	0.902	63.8	0.6	0.897	0.912	0.000	0.6	21	0.286
S51.002	1.041	114.9	27.3	0.855	0.900	0.149	1.2	124	0.859
S50.003	1.041	114.9	66.4	0.900	1.416	0.428	2.6	205	1.077
S50.004	0.963	106.3	88.0	1.416	0.830	0.589	2.6	261	1.071
S10.009	1.296	366.3	262.5	0.605	0.870	2.107	3.1	377	1.403
S10.010	0.937	117.8	257.8	1.070	1.347	2.173	3.1	400	0.949
S60.000	0.970	68.6	4.2	1.107	1.149	0.025	0.0	50	0.542
S60.001	0.834	59.0	15.7	1.149	0.935	0.099	0.0	105	0.708
S60.002	0.902	63.8	24.7	0.935	0.953	0.173	0.0	129	0.846
S60.003	0.834	59.0	38.7	0.953	0.801	0.284	0.0	178	0.889
S60.004	0.963	106.3	51.6	0.726	0.750	0.395	0.0	184	0.956
S60.005	0.963	106.3	55.0	0.750	1.007	0.432	0.0	192	0.971

CAUSEWAY 🛟			lichael Punc	ch and Partne	ר ח	File: 182186 Priorsland 2022 SI Network: Storm Proposed Marie Claire Daly 19/03/2020				Page 4 Foul Water Drainage Priorsland Residential Dublin		
					Links	<u>i</u>						
Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)	
S60.006	S60-6	S60-7	41.958	0.600	61.964	61.859	0.105	400.0	375	10.93	45.3	
S61.000	S61-0	S61-1	32.298	0.600	62.300	62.110	0.190	170.0	225	4.54	65.2	
S61.001	S61-1	S61-2	47.090	0.600	62.110	61.922	0.188	250.0	300	5.33	61.5	
S61.002	S61-2	S60-7	14.919	0.600	61.922	61.861	0.061	245.0	300	5.58	60.5	
S60.007	S60-7	S10-11	5.699	0.600	61.859	61.843	0.016	350.0	375	11.03	45.1	
S10.011	S10-11	S10-12	2 51.580	0.600	61.738	61.599	0.139	370.0	400	12.94	41.8	
S10.012	S10-12	S10-13	3 26.772	0.600	61.599	61.510	0.089	300.0	600	13.26	41.3	
S10.013	S10-13	Stream	n 4.603	0.600	61.510	60.935	0.575	8.0	225	13.28	41.2	

N	ame	Vel	Сар	Flow	US	DS	Σ Area	Σ Add	Pro	Pro	
		(m/s)	(I/s)	(I/s)	Depth	Depth	(ha)	Inflow	Depth	Velocity	
					(m)	(m)		(I/s)	(mm)	(m/s)	
S6	0.006	0.900	99.4	60.8	1.007	1.090	0.495	0.0	212	0.943	
S6	L.000	1.000	39.7	0.0	1.033	1.012	0.000	0.0	0	0.000	
S6	L.001	0.990	70.0	7.0	0.937	1.103	0.042	0.0	64	0.637	
S6	1.002	1.000	70.7	6.9	1.103	1.163	0.042	0.0	63	0.641	
S6	0.007	0.963	106.3	71.2	1.090	1.267	0.582	0.0	225	1.029	
S1(0.011	0.975	122.5	315.0	1.347	1.201	2.755	3.1	400	0.988	
S1(0.012	1.400	396.0	311.2	1.001	1.033	2.755	3.1	403	1.543	
S1(0.013	4.654	185.1	311.0	1.408	1.840	2.755	3.1	225	4.740	

Pipeline Schedule

Link	Length (m)	Slope (1:X)	Dia (mm)	Link Type	US CL (m)	US IL (m)	US Depth (m)	DS CL (m)	DS IL (m)	DS Depth (m)
S10.000	55.209	150.0	300	Circular	65.417	63.917	1.200	65.138	63.549	1.289
S10.001	11.455	200.0	375	Circular	65.138	63.549	1.214	65.022	63.492	1.155
S10.002	34.043	200.0	375	Circular	65.022	63.492	1.155	64.858	63.322	1.161
S10.003	36.060	200.0	375	Circular	64.858	63.322	1.161	64.575	63.142	1.058
S10.004	27.973	200.0	375	Circular	64.575	63.142	1.058	64.304	63.002	0.927
S10.005	50.411	200.0	375	Circular	64.304	63.002	0.927	64.565	62.750	1.440
S20.000	52.141	150.0	225	Circular	65.402	63.800	1.377	65.043	63.452	1.366
S20.001	12.009	110.9	225	Circular	65.043	63.452	1.366	65.090	63.344	1.521
S20.002	71.913	250.0	300	Circular	65.090	63.344	1.446	64.565	63.056	1.209
S20.003	44.958	245.0	300	Circular	64.565	63.056	1.209	64.565	62.872	1.393
S10.006	22.143	300.0	375	Circular	64.565	62.750	1.440	64.406	62.676	1.355
\$30.000	51.491	150.0	300	Circular	65.060	63.530	1.230	64.802	63.187	1.315

Link	US Node	Dia (mm)	Node Type	MH Type	DS Node	Dia (mm)	Node Type	MH Type
610.000	S10-0	• •	Manhole			• •	Manhole	<i>.</i> .
S10.000	210-0	1200	Mannole	Adoptable	S10-1	1200	wannoie	Adoptable
S10.001	S10-1	1200	Manhole	Adoptable	S10-2	1200	Manhole	Adoptable
S10.002	S10-2	1200	Manhole	Adoptable	S10-3	1200	Manhole	Adoptable
S10.003	S10-3	1200	Manhole	Adoptable	S10-4	1350	Manhole	Adoptable
S10.004	S10-4	1350	Manhole	Adoptable	S10-5	1350	Manhole	Adoptable
S10.005	S10-5	1350	Manhole	Adoptable	S10-6	1200	Manhole	Adoptable
S20.000	S20-0	1200	Manhole	Adoptable	S20-1	1200	Manhole	Adoptable
S20.001	S20-1	1200	Manhole	Adoptable	S20-2	1200	Manhole	Adoptable
S20.002	S20-2	1200	Manhole	Adoptable	S20-3	1200	Manhole	Adoptable
S20.003	S20-3	1200	Manhole	Adoptable	S10-6	1200	Manhole	Adoptable
S10.006	S10-6	1200	Manhole	Adoptable	S10-7	1200	Manhole	Adoptable
\$30.000	S30-0	1200	Manhole	Adoptable	S30-1	1200	Manhole	Adoptable

Michael Punch and Partners Lt	File: 182186 Priorsland 2022 SI	Pa
	Network: Storm Proposed	Fo
	Marie Claire Daly	P
	19/03/2020	D

Page 5 Foul Water Drainage Priorsland Residential Dublin

Pipeline Schedule

Link	Length (m)	Slope (1:X)	Dia (mm)	Link Type	US CL (m)	US IL (m)	US Depth (m)	DS CL (m)	DS IL (m)	DS Depth (m)
S30.001	12.558	150.0	375	Circular	64.802	63.187	1.240	64.586	63.103	1.108
S30.002	78.140	200.0	375	Circular	64.586	63.103	1.108	64.431	62.712	1.344
S30.003	6.254	150.0	375	Circular	64.431	62.712	1.344	64.406	62.670	1.361
S10.007	53.155	325.0	450	Circular	64.406	62.670	1.286	64.253	62.506	1.297
S40.000	34.328	149.9	225	Circular	64.790	63.365	1.200	64.514	63.136	1.153
S40.001	77.227	290.0	225	Circular	64.514	63.136	1.153	64.526	62.870	1.431
S41.000	9.092	150.0	225	Circular	64.445	63.020	1.200	64.526	62.959	1.342
S40.002	29.955	170.0	225	Circular	64.526	62.870	1.431	64.253	62.694	1.334
S40.003	19.475	170.0	300	Circular	64.253	62.694	1.259	64.253	62.579	1.374
S10.008	64.808	350.0	500	Circular	64.253	62.506	1.247	63.800	62.321	0.979
Swale1a	23.509	400.0	500	Circular	63.800	62.321	0.979	63.600	62.262	0.838
swale1b	41.905	400.0	500	Circular	63.600	62.262	0.838	63.300	62.157	0.643
S50.000	25.836	154.2	225	Circular	64.355	62.930	1.200	64.182	62.762	1.195
S50.001	16.408	154.2	225	Circular	64.182	62.762	1.195	64.084	62.656	1.203
S50.002	55.990	300.0	225	Circular	64.084	62.656	1.203	63.695	62.469	1.001
S51.000	26.543	170.0	225	Circular	63.654	62.629	0.800	63.823	62.473	1.125
S51.001	9.503	245.0	300	Circular	63.823	62.473	1.050	63.664	62.434	0.930
S52.000	14.364	300.0	300	Circular	63.697	62.500	0.897	63.664	62.452	0.912
S51.002	4.226	300.0	375	Circular	63.664	62.434	0.855	63.695	62.420	0.900
S50.003	73.494	300.0	375	Circular	63.695	62.420	0.900	63.966	62.175	1.416
S50.004	27.928	350.0	375	Circular	63.966	62.175	1.416	63.300	62.095	0.830
S10.009	67.123	350.0	600	Circular	63.300	62.095	0.605	63.373	61.903	0.870
S10.010	65.926	400.0	400	Circular	63.373	61.903	1.070	63.485	61.738	1.347
S60.000	77.269	260.0	300	Circular	64.457	63.050	1.107	64.202	62.753	1.149
S60.001	37.405	350.0	300	Circular	64.202	62.753	1.149	63.881	62.646	0.935

Link	US Node	Dia (mm)	Node Type	MH Type	DS Node	Dia (mm)	Node Type	МН Туре
S30.001	S30-1	1200	Manhole	Adoptable	S30-2	1350	Manhole	Adoptable
\$30.002	S30-2	1350	Manhole	Adoptable	S30-3	1350	Manhole	Adoptable
\$30.003	S30-3	1350	Manhole	Adoptable	S10-7	1200	Manhole	Adoptable
S10.007	S10-7	1200	Manhole	Adoptable	S10-8	1500	Manhole	Adoptable
S40.000	S40-0	1200	Manhole	Adoptable	S40-1	1200	Manhole	Adoptable
S40.001	S40-1	1200	Manhole	Adoptable	S40-2	1200	Manhole	Adoptable
S41.000	S41-0	1200	Manhole	Adoptable	S40-2	1200	Manhole	Adoptable
S40.002	S40-2	1200	Manhole	Adoptable	S40-3	1200	Manhole	Adoptable
S40.003	S40-3	1200	Manhole	Adoptable	S10-8	1500	Manhole	Adoptable
S10.008	S10-8	1500	Manhole	Adoptable	Swale1a	1500	Manhole	Adoptable
Swale1a	Swale1a	1500	Manhole	Adoptable	swale1b	1500	Manhole	Adoptable
swale1b	swale1b	1500	Manhole	Adoptable	S10-9	1500	Manhole	Adoptable
S50.000	S50-0	1200	Manhole	Adoptable	S50-1	1200	Manhole	Adoptable
S50.001	S50-1	1200	Manhole	Adoptable	S50-2	1200	Manhole	Adoptable
\$50.002	S50-2	1200	Manhole	Adoptable	S50-3	1350	Manhole	Adoptable
S51.000	S51-0	1200	Manhole	Adoptable	S51-1	1200	Manhole	Adoptable
S51.001	S51-1	1200	Manhole	Adoptable	S51-2	1200	Manhole	Adoptable
S52.000	S52-0	1200	Manhole	Adoptable	S51-2	1200	Manhole	Adoptable
S51.002	S51-2	1200	Manhole	Adoptable	S50-3	1350	Manhole	Adoptable
S50.003	S50-3	1350	Manhole	Adoptable	S50-4	1350	Manhole	Adoptable
S50.004	S50-4	1350	Manhole	Adoptable	S10-9	1500	Manhole	Adoptable
S10.009	S10-9	1500	Manhole	Adoptable	S10-10	1500	Manhole	Adoptable
S10.010	S10-10	1500	Manhole	Adoptable	S10-11	1350	Manhole	Adoptable
S60.000	S60-0	1200	Manhole	Adoptable	S60-1	1200	Manhole	Adoptable
S60.001	S60-1	1200	Manhole	Adoptable	S60-2	1200	Manhole	Adoptable

CAUSEW	XY 🛟	-					86 Priorsland Storm Propo re Daly 20		Page 6 Foul Water Drainage Priorsland Residential Dublin		
				<u>P</u>	<u>Pipeline Sc</u>	<u>hedule</u>					
Link	Length	Slope	Dia	Link	US CL	US IL	US Depth	DS CL		DS Depth	
	(m)	(1:X)	(mm)	Туре	(m)	(m)	(m)	(m)	(m)	(m)	
S60.002	96.319	300.0	300	Circular	63.881	62.646	0.935	63.578	62.325	0.953	
S60.003	43.987	350.0	300	Circular	63.578	62.325	0.953	63.300	62.199	0.801	
S60.004	49.919	350.0	375	Circular	63.300	62.199	0.726	63.181	62.056	0.750	
S60.005 S60.006	32.081 41.958	350.0 400.0	375 375	Circular Circular	63.181 63.346	62.056 61.964	0.750 1.007	63.346 63.324	61.964 61.859	1.007 1.090	
S61.000	32.298	400.0	225	Circular	63.558	62.300	1.007	63.347	62.110	1.030	
S61.000	47.090	250.0	300	Circular	63.347	62.300 62.110	0.937	63.325	61.922	1.1012	
S61.001	14.919	245.0	300	Circular	63.325	61.922	1.103	63.324	61.861	1.163	
S60.007	5.699	350.0	375	Circular	63.324	61.859	1.090	63.485	61.843	1.267	
S10.011	51.580	370.0	400	Circular	63.485	61.738	1.347	63.200	61.599	1.201	
S10.012	26.772	300.0	600	Circular	63.200	61.599	1.001	63.143	61.510	1.033	
S10.013	4.603	8.0	225	Circular	63.143	61.510	1.408	63.000	60.935	1.840	
	Link	US	Dia	Node	мн	DS	Dia	Node	мн		
	r	Node	(mm)	Туре	Туре	Nod	e (mm)	Туре	Туре		
Se	50.002 S	60-2	1200	Manhole	Adoptab	le S60-3	3 1200	Manhole	Adoptab	le	
Se	50.003 S	60-3	1200	Manhole	Adoptab	le S60-4	4 1350	Manhole	Adoptab	le	
		60-4	1350	Manhole	Adoptab			Manhole	Adoptab	le	
Se		60-5	1350	Manhole	Adoptab			Manhole			
		60-6	1350	Manhole	Adoptab			Manhole			
		61-0	1200	Manhole	Adoptab			Manhole			
		61-1	1200	Manhole	Adoptab			Manhole			
		61-2	1200	Manhole	Adoptab			Manhole			
		60-7	1350	Manhole	Adoptab			Manhole			
		10-11	1350	Manhole	Adoptab			Manhole			
S1	.0.012 S	10-12	1500	Manhole	Adoptak	ole S10-:	13 1500	Manhole	Adoptab	le	

S10.013 S10-13 1500 Manhole Adoptable Stream 1200 Manhole Adoptable

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connection	S	Link	IL (m)	Dia (mm)
S10-0	722125.614	724001.592	65.417	1.500	1200					
						\rightarrow_{0}				
							0	S10.000	63.917	300
S10-1	722179.953	723990.796	65.138	1.589	1200		1	S10.000	63.549	300
						1				
						v	0	S10.001	63.549	375
S10-2	722177.846	723979.532	65.022	1.530	1200	1	1	S10.001	63.492	375
						ϕ				
						0 0	0	S10.002	63.492	375
S10-3	722171.846	723949.595	64.858	1.536	1200	1	1	S10.002	63.322	375
						ϕ				
						o V	0	S10.003	63.322	375
S10-4	722162.627	723903.099	64.575	1.433	1350	1	1	S10.003	63.142	375
						() >o				
							0	S10.004	63.142	375

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connection	S	Link	IL (m)	Dia (mm)
S10-5	722190.066	723897.660	64.304	1.302	1350		1	S10.004	63.002	375
						1				
							0	S10.005	63.002	375
S20-0	722109.621	723993.139	65.402	1.602	1200	\frown				
						φ	0	620,000	62,800	225
S20-1	722099.412	723942.074	65.043	1.591	1200	0	0	S20.000 S20.000	63.800 63.452	225 225
320-1	722033.412	723942.074	05.045	1.591	1200	Ŕ,	Ŧ	320.000	03.432	225
						0	0	S20.001	63.452	225
S20-2	722108.477	723934.617	65.090	1.746	1200		1	S20.001	63.344	225
							0	S20.002	63.344	300
S20-3	722167.730	723893.220	64.565	1.509	1200	1	1	S20.002	63.056	300
							0	S20.003	63.056	300
S10-6	722212.564	723896.896	64.565	1.815	1200		1	S20.003	62.872	300
						7-0	2	S10.005	62.750	375
						0	0	S10.006	62.750	375
S30-0	722195.584	723987.616	65.060	1.530	1200					
						\longrightarrow_0				
							0	\$30.000	63.530	300
S30-1	722246.055	723977.524	64.802	1.615	1200	1	1	\$30.000	63.187	300
						Ţ	0	\$30.001	63.187	375
S30-2	722243.377	723965.091	64.586	1.483	1350	1	1	S30.001	63.103	375
						ϕ				
						v	0	\$30.002	63.103	375
S30-3	722228.039	723888.579	64.431	1.719	1350	$\frac{1}{2}$	1	\$30.002	62.712	375
							0	\$30.003	62.712	375
S10-7	722229.041	723882.276	64.406	1.736	1200	1,	1	\$30.003	62.670	375
							2	S10.006	62.676	375
						0	0	S10.007	62.670	450
S40-0	722254.624	723970.066	64.790	1.425	1200	Q.				
							0	S40.000	63.365	225
S40-1	722289.701	723963.352	64.514	1.378	1200		1	S40.000	63.136	225
						1	-			
						v v	0	S40.001	63.136	225
						1		1		

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connection	S	Link	IL (m)	Dia (mm)
S41-0	722268.568	723899.252	64.445	1.425	1200					/
							0	S41.000	63.020	225
S40-2	722277.468	723897.394	64.526	1.656	1200	2	1	S41.000	62.959	225
							2	S40.001	62.870	225
						04	0	S40.002	62.870	225
S40-3	722255.484	723857.862	64.253	1.559	1200		1	S40.002	62.694	225
						70	0	S40.003	62.694	300
S10-8	722258.809	723853.218	64.253	1.747	1500	2 ¹	1	S40.003	62.579	300
						Ż	2	S10.007	62.506	450
						Õ	0	S10.008	62.506	500
Swale1a	722292.204	723797.676	63.800	1.479	1500		1	S10.008	62.321	500
						а 0	0	Swale1a	62.321	500
swale1b	722308.685	723780.912	63.600	1.338	1500	1	1	Swale1a	62.262	500
							0	swale1b	62.262	500
S50-0	722297.008	723884.448	64.355	1.425	1200					
							0	S50.000	62.930	225
S50-1	722322.288	723880.846	64.182	1.420	1200	1	1	\$50.000	62.762	225
							0	S50.001	62.762	225
S50-2	722338.483	723878.539	64.084	1.428	1200	1	1	S50.001	62.656	225
						0	0	S50.002	62.656	225
S51-0	722401.250	723808.254	63.654	1.025	1200	° ~				
							0	S51.000	62.629	225
S51-1	722382.442	723826.983	63.823	1.350	1200		1	S51.000	62.473	225
						1	0	S51.001	62.473	300
\$52-0	722391.405	723846.814	63.697	1.197	1200	\bigcirc	0	331.001	02.473	
						o	0	\$52.000	62.500	300
S51-2	722381.967	723836.474	63.664	1.230	1200	0 1	1	\$52.000	62.452	300
							2	S51.001	62.434	300

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections	Link	IL (m)	Dia (mm)
S50-3	722378.733	723839.603	63.695	1.275	1350	. 1	S51.002	62.420	375
							\$50.002	62.469	225
						0 ⁻¹ C	S50.003	62.420	375
S50-4	722327.423	723786.985	63.966	1.791	1350		\$50.003	62.175	375
						° (\$50.004	62.175	375
S10-9	722346.209	723762.258	63.300	1.205	1500	1 1		62.095	375
						2 >0 2		62.157	500
						C	S10.009	62.095	600
S10-10	722409.594	723784.346	63.373	1.470	1500	1	S10.009	61.903	600
						C	S10.010	61.903	400
S60-0	722297.617	723961.752	64.457	1.407	1200				
							S60.000	63.050	300
S60-1	722336.708	723953.939	64.202	1.449	1200	1		62.753	300
						1			
						C	S60.001	62.753	300
S60-2	722373.388	723946.612	63.881	1.235	1200	1	S60.001	62.646	300
						C	S60.002	62.646	300
S60-3	722418.818	723937.051	63.578	1.253	1200	10	S60.002	62.325	300
						0		62.325	300
S60-4	722461.907	723928.206	63.300	1.101	1350	1	S60.003	62.199	300
						. ↓ C	S60.004	62.199	375
S60-5	722461.834	723909.996	63.181	1.125	1350		S60.004	62.056	375
						v C	S60.005	62.056	375
S60-6	722462.183	723838.360	63.346	1.382	1350		S60.005	61.964	375
						° C	S60.006	61.964	375
S61-0	722392.344	723826.054	63.558	1.258	1200	Q			
						^ی (S61.000	62.300	225
S61-1	722415.747	723803.795	63.347	1.237	1200		S61.000	62.110	225
						- \			

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections	Link	IL (m)	Dia (mm)
S61-2	722422.109	723798.002	63.325	1.403	1200	1 1	1 S61.001	61.922	300
						Ŭ	0 S61.002	61.922	300
S60-7	722432.434	723808.771	63.324	1.465	1350	2	1 S61.002	61.861	300
						×.	2 S60.006	61.859	375
						1 0	0 S60.007	61.859	375
S10-11	722437.143	723805.561	63.485	1.747	1350		1 S60.007	61.843	375
							2 S10.010	61.738	400
						2	0 S10.011	61.738	400
S10-12	722477.814	723837.284	63.200	1.601	1500		1 S10.011	61.599	400
						1	0 S10.012	61.599	600
S10-13	722482.147	723863.703	63.143	1.633	1500		1 S10.012	61.510	600
510 15	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	723003.703	03.143	1.055	1000	\square	1 510.012	01.510	000
						/	0 S10.013	61.510	225
Stream	722484.447	723867.690	63.000	2.065	1200		1 S10.013	60.935	225
			<u>Si</u>	imulation	Setting	<u>s</u>			
	Μ	FSR Region S I5-60 (mm) 1 Ratio-R 0 Summer CV 0	SR cotland ar 6.900 .273 .750 .840	nd Ireland	Ad	Analysi: Skip Stead Drain Down Time dditional Storage Check Discharge Check Discharge	ly State x e (mins) 48 (m ³ /ha) 20 Rate(s) x		
	1			Storm Du					
	15 60	180 36 240 48	50 60 30 72			2160432028805760	7200 8640	10080	
	30 120								
	I	(years)	Climate Cl (CC %	6)	Addition (A 1	%) (0	onal Flow Q %)		
	I			-					

Overrides Design AreaxDepression Storage Area (m²)0Evapo-transpiration (mm/day)0Overrides Design Additional InflowxDepression Storage Depth (mm)00Applies to All storms

Time (mins) Depth (mins) Time (mins) Depth (mins) Time (m) Depth (m) Time (m) <th>CAUS</th> <th>EWA</th> <th></th> <th>Michael Pu</th> <th>nch and Pa</th> <th>artners Lt</th> <th></th> <th>Storm Pro ire Daly</th> <th>and 2022 SI oposed</th> <th colspan="3">Page 11 Foul Water Drainage Priorsland Residential Dublin</th>	CAUS	EWA		Michael Pu	nch and Pa	artners Lt		Storm Pro ire Daly	and 2022 SI oposed	Page 11 Foul Water Drainage Priorsland Residential Dublin		
0 0.591 1740 0.585 3480 0.585 5220 0.585 6960 0.585 8700 0.585 120 0.591 1800 0.585 3540 0.585 5280 0.585 7020 0.585 8760 0.585 120 0.591 1800 0.585 3660 0.585 5400 0.585 7140 0.585 8820 0.585 240 0.591 1920 0.585 3720 0.585 5400 0.585 7140 0.585 8840 0.585 300 0.591 2100 0.585 3780 0.585 5520 0.585 7320 0.585 9000 0.585 420 0.591 2160 0.585 3900 0.585 5700 0.585 7440 0.585 9120 0.585 440 0.585 2280 0.585 4400 0.585 7500 0.585 9240 0.585 540 0.585 4200		•		-		•		•		•		
60 0.591 1800 0.585 3540 0.585 5280 0.585 7020 0.585 8820 0.585 120 0.591 1920 0.585 3600 0.585 5340 0.585 7140 0.585 8820 0.585 120 0.591 1920 0.585 3660 0.585 5400 0.585 7140 0.585 8840 0.585 300 0.591 2040 0.585 3720 0.585 5520 0.585 7260 0.585 9000 0.585 420 0.591 2100 0.585 3840 0.585 5560 0.585 7320 0.585 9120 0.585 540 0.585 2280 0.585 4020 0.585 5700 0.585 7500 0.585 9300 0.585 600 0.621 2340 0.585 4140 0.585 5820 0.585 7600 0.585 9400 0.585 720 0.946 2460 0.585 4200 0.585 6800 0.585 7700	• •	• •		• •				• •				
120 0.591 1860 0.585 3600 0.585 5340 0.585 7780 0.585 8820 0.585 180 0.591 1920 0.585 3660 0.585 5400 0.585 7720 0.585 8840 0.585 300 0.591 2040 0.585 3720 0.585 5520 0.585 7260 0.585 9000 0.585 300 0.591 2100 0.585 3840 0.585 5520 0.585 7320 0.585 9000 0.585 420 0.591 2220 0.585 3900 0.585 5700 0.585 7440 0.585 9180 0.585 600 0.621 2340 0.585 4020 0.585 5700 0.585 7700 0.585 9300 0.585 700 0.621 2340 0.585 4140 0.585 5840 0.585 7620 0.585 9420 0.585 700 0.482 2400 0.585 4200 0.585 5740 0.585 940												
180 0.591 1920 0.585 3660 0.585 5400 0.585 7140 0.585 8880 0.585 240 0.591 1980 0.585 3720 0.585 5460 0.585 7200 0.585 8940 0.585 300 0.591 2040 0.585 3780 0.585 5520 0.585 7260 0.585 9000 0.585 420 0.591 2160 0.585 3900 0.585 5540 0.585 7380 0.585 9120 0.585 480 0.591 2220 0.585 4020 0.585 5700 0.585 7440 0.585 9120 0.585 600 0.521 2340 0.585 4020 0.585 5700 0.585 7500 0.585 9300 0.585 600 0.621 2340 0.585 4140 0.585 5800 0.585 7600 0.585 9300 0.585 720 0.946 2460 0.585 4200 0.585 6700 0.585 9400												
240 0.591 1980 0.585 3720 0.585 5460 0.585 7200 0.585 8940 0.585 300 0.591 2040 0.585 3780 0.585 5520 0.585 7260 0.585 9000 0.585 420 0.591 2100 0.585 3840 0.585 5540 0.585 7420 0.585 9100 0.585 440 0.591 2220 0.585 3960 0.585 5700 0.585 7440 0.585 9120 0.585 540 0.585 2280 0.585 4020 0.585 5700 0.585 7500 0.585 9300 0.585 660 0.621 2340 0.585 4020 0.585 5820 0.585 7600 0.585 9300 0.585 700 0.946 2460 0.585 4200 0.585 5940 0.585 7620 0.585 9420 0.585 700 1.037 2520 0.585 4320 0.585 6120 0.585 7680												
300 0.591 2040 0.585 3780 0.585 5520 0.585 7260 0.585 9000 0.585 360 0.591 2100 0.585 3840 0.585 5580 0.585 7320 0.585 9060 0.585 420 0.591 2220 0.585 3900 0.585 5700 0.585 7740 0.585 9120 0.585 480 0.591 2220 0.585 3960 0.585 5700 0.585 7700 0.585 9120 0.585 600 0.621 2340 0.585 4020 0.585 5700 0.585 7600 0.585 9300 0.585 600 0.621 2340 0.585 4100 0.585 5800 0.585 7600 0.585 9300 0.585 700 0.946 2460 0.585 4200 0.585 6000 0.585 7740 0.585 9480 0.585 900 1.129 2640 0.585 4200 0.585 6120 0.585 9700												
360 0.591 2100 0.585 3840 0.585 5580 0.585 7320 0.585 9060 0.585 420 0.591 2160 0.585 3900 0.585 5640 0.585 7380 0.585 9120 0.585 480 0.591 2220 0.585 3960 0.585 5700 0.585 7440 0.585 9120 0.585 600 0.621 2340 0.585 4020 0.585 5820 0.585 7500 0.585 9300 0.585 600 0.621 2340 0.585 4140 0.585 5820 0.585 7620 0.585 9300 0.585 720 0.946 2460 0.585 4200 0.585 6000 0.585 7740 0.585 9420 0.585 740 1.10 2580 0.585 4320 0.585 6160 0.585 7860 0.585 9660 0.585 900 1.129 2640 0.585 4320 0.585 6160 0.585 8040<	-											
420 0.591 2160 0.585 3900 0.585 5640 0.585 7380 0.585 9120 0.585 480 0.591 2220 0.585 3960 0.585 5700 0.585 7440 0.585 9180 0.585 600 0.621 2340 0.585 4020 0.585 5760 0.585 7500 0.585 9300 0.585 660 0.798 2400 0.585 4140 0.585 5820 0.585 7620 0.585 9300 0.585 720 0.946 2460 0.585 4200 0.585 5940 0.585 7620 0.585 9420 0.585 780 1.037 2520 0.585 4260 0.585 6000 0.585 7740 0.585 9430 0.585 900 1.129 2640 0.585 4380 0.585 6120 0.585 7800 0.585 9600 0.585 900 1.115 2700 0.585 4500 0.585 6240 0.585 8160												
480 0.591 2220 0.585 3960 0.585 5700 0.585 7440 0.585 9180 0.585 540 0.585 2280 0.585 4020 0.585 5760 0.585 7500 0.585 9240 0.585 600 0.621 2340 0.585 4080 0.585 5820 0.585 7500 0.585 9300 0.585 600 0.798 2400 0.585 4140 0.585 5820 0.585 7620 0.585 9420 0.585 720 0.946 2460 0.585 4200 0.585 5940 0.585 7740 0.585 9420 0.585 780 1.037 2520 0.585 4320 0.585 6120 0.585 7800 0.585 9400 0.585 900 1.129 2640 0.585 4320 0.585 6120 0.585 7800 0.585 9600 0.585 900 1.115 2700 0.585 4500 0.585 6130 0.585 8100												
540 0.585 2280 0.585 4020 0.585 5760 0.585 7500 0.585 9240 0.585 600 0.621 2340 0.585 4080 0.585 5820 0.585 7560 0.585 9300 0.585 660 0.798 2400 0.585 4140 0.585 5840 0.585 7620 0.585 9300 0.585 780 1.037 2520 0.585 4260 0.585 6000 0.585 7780 0.585 9420 0.585 900 1.129 2640 0.585 4320 0.585 6120 0.585 7800 0.585 9400 0.585 900 1.129 2640 0.585 4440 0.585 6120 0.585 7920 0.585 9600 0.585 900 1.115 2700 0.585 4500 0.585 6240 0.585 8040 0.585 9720 0.585 1020 1.094 2760 0.585 4560 0.585 6420 0.585 810												
6000.62123400.58540800.58558200.58575600.58593000.5856600.79824000.58541400.58558800.58576200.58593600.5857200.94624600.58542000.58559400.58576800.58594200.5857801.03725200.58542000.58560000.58577400.58594800.5858401.11025800.58543200.58560000.58578000.58595400.5859001.12926400.58543300.58561200.58578000.58596600.5859001.11527000.58544400.58561800.58579200.58596600.58510201.09427600.58545600.58561200.58581000.58597200.58511400.93428800.58546200.58563600.58581000.58599000.58512000.84329400.58546200.58564200.58581000.58599000.58512000.84329400.58546800.58564200.58581000.58599000.58512000.84329400.58548600.58564200.58581400.585100200.585 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>									-			
6600.79824000.58541400.58558800.58576200.58593600.5857200.94624600.58542000.58559400.58576800.58594200.5857801.03725200.58542600.58560000.58577400.58594800.5858401.11025800.58543200.58560600.58578000.58595400.5859001.12926400.58543800.58561200.58578000.58596000.5859001.11527000.58544400.58561200.58579200.58596000.5859001.09427600.58545000.58562400.58579200.58597200.58510201.09427600.58545000.58563000.58580400.58597200.58511400.93428800.58546200.58564200.58581000.58599000.58512000.84329400.58544800.58564200.58581000.58599000.58512000.84329400.58548600.58566000.58582000.585100200.58513200.67730600.58549200.58566600.58584000.585100200.585<												
7200.94624600.58542000.58559400.58576800.58594200.5857801.03725200.58542600.58560000.58577400.58594800.5858401.11025800.58543200.58560600.58578000.58595400.5859001.12926400.58543800.58561200.58578600.58596000.5859601.11527000.58544400.58561800.58579200.58596600.58510201.09427600.58545000.58563000.58580400.58597200.58511400.93428800.58546200.58563000.58581000.58599000.58512000.84329400.58546200.58564200.58581000.58599000.58512000.84329400.58546200.58564200.58581000.58599000.58512000.76030000.58548000.58564200.58581600.58510200.58512000.67730600.58548000.58565400.58582200.58510200.58513000.58531800.58550400.58566600.58584600.58510200.585<												
780 1.037 2520 0.585 4260 0.585 6000 0.585 7740 0.585 9480 0.585 840 1.110 2580 0.585 4320 0.585 6060 0.585 7800 0.585 9540 0.585 900 1.129 2640 0.585 4380 0.585 6120 0.585 7860 0.585 9600 0.585 900 1.115 2700 0.585 4440 0.585 6180 0.585 7920 0.585 9660 0.585 1020 1.094 2760 0.585 4500 0.585 6240 0.585 7980 0.585 9720 0.585 1140 0.934 2880 0.585 4620 0.585 6360 0.585 8100 0.585 9840 0.585 1200 0.843 2940 0.585 4620 0.585 6420 0.585 8100 0.585 9900 0.585 1200 0.677 3000 0.585 4800 0.585 6420 0.585												
8401.11025800.58543200.58560600.58578000.58595400.5859001.12926400.58543800.58561200.58578600.58596000.5859601.11527000.58544400.58561800.58579200.58596600.58510201.09427600.58545000.58562400.58579800.58597200.58510801.03128200.58545600.58563000.58580400.58597800.58511400.93428800.58546200.58563600.58581000.58598400.58512000.84329400.58546200.58564200.58581600.58599000.58512000.76030000.58547400.58564200.58582200.58599600.58512000.67730600.58548000.58565400.58582800.585100200.58513200.67730600.58549200.58566600.58584000.585100200.58513800.60831200.58549800.58567200.58584600.585100800.58515600.58533000.58551000.58568400.58585200.58510800												
9001.12926400.58543800.58561200.58578600.58596000.5859601.11527000.58544400.58561800.58579200.58596600.58510201.09427600.58545000.58562400.58579800.58597200.58510801.03128200.58545600.58563000.58580400.58597800.58511400.93428800.58546200.58563600.58581000.58598400.58512000.84329400.58546800.58564200.58581600.58599000.58512600.76030000.58544600.58564800.58582200.58599000.58513200.67730600.58548000.58566400.58582800.585100200.58513800.60031200.58549200.58566600.58584000.585100800.58515000.58532400.58550400.58567200.58585000.585100800.58516000.58533600.58551000.58567800.58585200.58510800.58516200.58534200.58551000.58566000.58585400.5851080												
9601.11527000.58544400.58561800.58579200.58596600.58510201.09427600.58545000.58562400.58579800.58597200.58510801.03128200.58545600.58563000.58580400.58597800.58511400.93428800.58546200.58563600.58581000.58598400.58512000.84329400.58546800.58564200.58581600.58599000.58512000.76030000.58547400.58564200.58581600.58599000.58512000.76730600.58548000.58564800.58582200.58599600.58513200.67730600.58548000.58566000.58582800.585100200.58513800.60031200.58549200.58566600.58584000.585100800.58514400.58533000.58550400.58567200.58584600.585100800.58515600.58533000.58551000.58568400.58585200.58510081084108416800.58534200.58551600.58569000.58586400.585												
10201.09427600.58545000.58562400.58579800.58597200.58510801.03128200.58545600.58563000.58580400.58597800.58511400.93428800.58546200.58563600.58581000.58598400.58512000.84329400.58546800.58564200.58581600.58599000.58512600.76030000.58547400.58564800.58582200.58599600.58513200.67730600.58548600.58565400.58582800.585100200.58513800.60031200.58549200.58566600.58584600.585100200.58515000.58532400.58549800.58567200.58584600.585100800.58515000.58533000.58550400.58567800.58585200.5851444158516200.58551000.58569000.58585800.5851454144416200.58533600.58551000.58569000.58585800.585165414440.585145414440.585145414440.585151600.58567800.58585200.58515451546<												
10801.03128200.58545600.58563000.58580400.58597800.58511400.93428800.58546200.58563600.58581000.58598400.58512000.84329400.58546800.58564200.58581600.58599000.58512000.76030000.58547400.58564800.58582200.58599600.58513200.67730600.58548000.58565400.58582800.585100200.58513800.60031200.58548600.58566000.58584000.585100200.58514400.58531800.58549200.58566600.58584000.585100800.58515000.58532400.58550400.58567200.58584600.585100800.58516200.58533600.58551000.58568400.58585200.58510020144416800.58534200.58551600.58569000.58586400.58516514400.58516500.58516900.58585400.58516514401444144414441444144414441444144414441444144414441444144414441444 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
11400.93428800.58546200.58563600.58581000.58598400.58512000.84329400.58546800.58564200.58581600.58599000.58512600.76030000.58547400.58564800.58582200.58599600.58513200.67730600.58548000.58565400.58582800.585100200.58513800.60031200.58548600.58566600.58584000.585100800.58514400.58531800.58549200.58566600.58584000.585100800.58515000.58532400.58549800.58567200.58584600.585100800.58516200.58533000.58550400.58567800.58585200.5851444144416200.58534200.58551000.58568400.58585800.5851444144416200.58534200.58551000.58568400.58585200.5851444144416200.58534200.58551000.58569000.58586400.5851444144416200.58534200.58551000.58569000.58586400.58514441												
12000.84329400.58546800.58564200.58581600.58599000.58512600.76030000.58547400.58564800.58582200.58599600.58513200.67730600.58548000.58565400.58582800.585100200.58513800.60031200.58548600.58566000.58583400.585100800.58514400.58531800.58549200.58566600.58584000.585100800.58515000.58532400.58549800.58567200.58584600.585100800.58515000.58533000.58550400.58567800.58585200.585100800.58516200.58533600.58551000.58568400.58585800.58510010801080108016800.58534200.58551000.58569000.58586400.585108010801080108016800.58534200.58551600.58569000.58586400.585108010801080108016800.58534200.58551600.58569000.58586400.5851080108010801080IsoparticityIsoparticity												
12600.76030000.58547400.58564800.58582200.58599600.58513200.67730600.58548000.58565400.58582800.585100200.58513800.60031200.58548600.58566000.58583400.585100800.58514400.58531800.58549200.58566600.58584000.585100800.58515000.58532400.58549800.58567200.58584600.585100800.58515600.58533000.58550400.58567800.58585200.585100100801008016200.58533600.58551000.58569000.58585400.58510010080100801008016800.58534200.58551000.58569000.58586400.58510010080 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
1320 0.677 3060 0.585 4800 0.585 6540 0.585 8280 0.585 10020 0.585 1380 0.600 3120 0.585 4860 0.585 6600 0.585 8340 0.585 10020 0.585 1440 0.585 3180 0.585 4920 0.585 6660 0.585 8400 0.585 10080 0.585 1500 0.585 3240 0.585 4980 0.585 6720 0.585 8460 0.585 1560 0.585 3300 0.585 5040 0.585 6780 0.585 8520 0.585 1620 0.585 3360 0.585 5100 0.585 6840 0.585 8580 0.585 1680 0.585 3420 0.585 5160 0.585 6900 0.585 8640 0.585 1680 0.585 3420 0.585 5160 0.585 6900 0.585 8640 0.585 1680 0.585 3420 0.585 5160												
1380 0.600 3120 0.585 4860 0.585 6600 0.585 8340 0.585 10080 0.585 1440 0.585 3180 0.585 4920 0.585 6660 0.585 8400 0.585 1500 0.585 3240 0.585 4980 0.585 6720 0.585 8460 0.585 1560 0.585 3300 0.585 5040 0.585 6780 0.585 8520 0.585 1620 0.585 3360 0.585 5100 0.585 6840 0.585 8520 0.585 1680 0.585 3420 0.585 5160 0.585 6900 0.585 8640 0.585 1680 0.585 3420 0.585 5160 0.585 6900 0.585 8640 0.585 1680 0.585 3420 0.585 5160 0.585 6900 0.585 8640 0.585 1680 0.585 3420 0.585 5160 0.585 6900 0.585 8640 <												
1440 0.585 3180 0.585 4920 0.585 6660 0.585 8400 0.585 1500 0.585 3240 0.585 4980 0.585 6720 0.585 8460 0.585 1560 0.585 3300 0.585 5040 0.585 6720 0.585 8460 0.585 1620 0.585 3360 0.585 5100 0.585 6840 0.585 8520 0.585 1680 0.585 3420 0.585 5160 0.585 6900 0.585 8640 0.585 Node S10-13 Online Hydro-Brake® Control												
1500 0.585 3240 0.585 4980 0.585 6720 0.585 8460 0.585 1560 0.585 3300 0.585 5040 0.585 6780 0.585 8520 0.585 1620 0.585 3360 0.585 5100 0.585 6840 0.585 8580 0.585 1680 0.585 3420 0.585 5160 0.585 6900 0.585 8640 0.585 Node S10-13 Online Hydro-Brake® Control											10080	0.585
1560 0.585 3300 0.585 5040 0.585 6780 0.585 8520 0.585 1620 0.585 3360 0.585 5100 0.585 6840 0.585 8580 0.585 1680 0.585 3420 0.585 5160 0.585 6900 0.585 8640 0.585 Node S10-13 Online Hydro-Brake® Control Flap Valve x Objective (HE) Minimise upstream storage												
1620 0.585 3360 0.585 5100 0.585 6840 0.585 8580 0.585 1680 0.585 3420 0.585 5160 0.585 6900 0.585 8640 0.585 Node S10-13 Online Hydro-Brake® Control Flap Valve x Objective (HE) Minimise upstream storage												
1680 0.585 3420 0.585 5160 0.585 6900 0.585 8640 0.585 Node S10-13 Online Hydro-Brake® Control Flap Valve x Objective (HE) Minimise upstream storage												
Node S10-13 Online Hydro-Brake [®] Control Flap Valve x Objective (HE) Minimise upstream storage												
Flap Valve x Objective (HE) Minimise upstream storage	1080	0.585	3420	0.585	5160	0.585	6900	0.585	8640	0.585		
				<u>1</u>	Node S10-:	13 Online I	Hydro-Bral	e [®] Contro	<u>) </u>			
			Fla	n Valve 🗸	,		Ohi	activa (I	HE) Minimis	aunstrea	m storage	
		Renlaces		-			-	•		c upstied	in storage	

	^	Objective	(IIL) Minimise upstream storage
Replaces Downstream Link	х	Sump Available	\checkmark
Invert Level (m)	61.510	Product Number	CTL-SHE-0095-5000-1700-5000
Design Depth (m)	1.700	Min Outlet Diameter (m)	0.150
Design Flow (I/s)	5.0	Min Node Diameter (mm)	1200

Node S20-1 Online Hydro-Brake[®] Control

Flap Valve	х	Objective	(HE) Minimise upstream storage
Replaces Downstream Link	\checkmark	Sump Available	\checkmark
Invert Level (m)	63.452	Product Number	CTL-SHE-0034-4000-0450-4000
Design Depth (m)	0.450	Min Outlet Diameter (m)	0.075
Design Flow (I/s)	0.4	Min Node Diameter (mm)	1200

Node S10-5 Online Hydro-Brake[®] Control

Flap Valve	х	Objective	(HE) Minimise upstream storage
Replaces Downstream Link	\checkmark	Sump Available	\checkmark
Invert Level (m)	63.002	Product Number	CTL-SHE-0025-3000-0900-3000
Design Depth (m)	0.900	Min Outlet Diameter (m)	0.075
Design Flow (I/s)	0.3	Min Node Diameter (mm)	1200

Node S30-3 Online Hydro-Brake[®] Control

Flap Valve Replaces Downstream Link Invert Level (m) Design Depth (m)	√ 62.712	Sump Available	CTL-SHE-0042-6000-0450-6000
Design Flow (I/s)	0.6	Min Node Diameter (mm)	1200

Node S40-3 Online Hydro-Brake[®] Control

Flap Valve	х	Objective	(HE) Minimise upstream storage
Replaces Downstream Link	\checkmark	Sump Available	\checkmark
Invert Level (m)	62.694	Product Number	CTL-SHE-0042-6000-0450-6000
Design Depth (m)	0.450	Min Outlet Diameter (m)	0.075
Design Flow (I/s)	0.6	Min Node Diameter (mm)	1200

Node S50-4 Online Hydro-Brake[®] Control

Flap Valve	х	Objective	(HE) Minimise upstream storage
Replaces Downstream Link	\checkmark	Sump Available	\checkmark
Invert Level (m)	62.175	Product Number	CTL-SHE-0085-2600-0450-2600
Design Depth (m)	0.450	Min Outlet Diameter (m)	0.100
Design Flow (I/s)	2.6	Min Node Diameter (mm)	1200

Node S50-0 Offline Orifice Control

Flap Valve	\checkmark	Design Depth (m)	0.225	Discharge Coefficient	0.600
Loop to Node	S40-2	Design Flow (I/s)	35.0		
Invert Level (m)	63.500	Diameter (m)	0.223		

Node S50-4 Offline Depth/Flow Control

Flap Valve	\checkmark	Invert Level (m)	62.800	Design Flow (I/s)	35.0
Loop to Node	Swale1a	Design Depth (m)	0.225		

Depth	Flow
(m)	(I/s)
0.225	35.000

Node S61-0 Offline Depth/Flow Control

Flap Valve	х	Invert Level (m)	62.600	Design Flow (I/s)	35.0
Loop to Node	S51-2	Design Depth (m)	0.225		

Depth	Flow
(m)	(I/s)
0.225	35.000

Node S20-1 Depth/Area Storage Structure

Base Inf Coefficie Side Inf Coefficie	• •			ty Factor Porosity		Time to h		₋evel (m) ty (mins)	63.452
Depth	Area	Inf Area	Depth	Area	Inf Area	Depth	Area	Inf Area	
(m)	(m²)	(m²)	(m)	(m²)	(m²)	(m)	(m²)	(m²)	
0.000	245.0	245.0	0.450	245.0	245.0	0.451	0.0	245.0	

Marie Claire Daly Priorsland R												
	19/03/2020	Dublin										
Node S10-4 Depth/Area Storage Structure												
Base Inf Coefficient (m/hr) 0.01010 Side Inf Coefficient (m/hr) 0.00000		Invert Level (m) Time to half empty (mins)	63.142									
Depth Area Inf Area (m) (m ²) (m ²) 0.000 516.0 516.0	Depth Area Inf Area (m) (m ²) (m ²) 0.900 516.0 516.0	Depth Area Inf Area (m) (m²) (m²) 0.901 0.0 516.0										
Node S30-3 Depth/Area Storage Structure												
Base Inf Coefficient (m/hr) 0.01010 Side Inf Coefficient (m/hr) 0.00000		Invert Level (m) Time to half empty (mins)	62.712									
Depth Area Inf Area (m) (m ²) (m ²) 0.000 523.0 523.0	DepthAreaInf Area(m)(m²)(m²)0.450523.0523.0	Depth Area Inf Area (m) (m²) (m²) 0.451 0.0 523.0										
Node	Node S40-3 Depth/Area Storage Structure											
Base Inf Coefficient (m/hr)0.01010Safety Factor2.0Invert Level (m)Side Inf Coefficient (m/hr)0.00000Porosity0.95Time to half empty (mins)												
Depth Area Inf Area (m) (m ²) (m ²) 0.000 522.0 522.0	Depth Area Inf Area (m) (m²) (m²) 0.450 522.0 522.0	Depth Area Inf Area (m) (m²) (m²) 0.451 0.0 522.0										
Node	550-4 Depth/Area Storage Str	u <u>cture</u>										
Base Inf Coefficient (m/hr) 0.01010 Side Inf Coefficient (m/hr) 0.00000		Invert Level (m) Time to half empty (mins)	62.175									
Depth Area Inf Area (m) (m ²) (m ²) 0.000 782.0 782.0	Depth Area Inf Area (m) (m²) (m²) 0.450 782.0 782.0	Depth Area Inf Area (m) (m²) (m²) 0.451 0.0 782.0										
Node	60-6 Depth/Area Storage Str	ucture										
Base Inf Coefficient (m/hr) 0.01010 Side Inf Coefficient (m/hr) 0.00000		Invert Level (m) Time to half empty (mins)	61.964									
Depth Area Inf Area (m) (m ²) (m ²) 0.000 350.0 350.0	Depth Area Inf Area (m) (m²) (m²) 0.450 350.0 350.0	Depth Area Inf Area (m) (m²) (m²) 0.451 0.0 350.0										
Nod	e S10-2 Carpark Storage Struc	ture										

Base Inf Coefficient (m/hr)	0.00000	Invert Level (m)	64.622	Slope (1:X)	5000.0
Side Inf Coefficient (m/hr)	0.00000	Time to half empty (mins)	0	Depth (m)	0.300
Safety Factor	2.0	Width (m)	25.000	Inf Depth (m)	
Porosity	0.33	Length (m)	6.760		

CAUSEWAY 🛟	el Punch and F		-								
Node S10-3 Carpark Storage Structure											
Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr) Safety Factor Porosity	0.00000 0.00000 2.0 0.33	Invert Level (m) Time to half empty (mins) Width (m) Length (m)	64.458 0 25.000 I 10.760	Slope (1:X) Depth (m) nf Depth (m)	5000.0 0.300						
Node S10-4 Carpark Storage Structure											
Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr) Safety Factor Porosity	0.00000 0.00000 2.0 0.33	Invert Level (m) Time to half empty (mins) Width (m) Length (m)	64.175 0 25.000 I 24.720	Slope (1:X) Depth (m) nf Depth (m)	5000.0 0.300						
Node S20-0 Carpark Storage Structure											
Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr) Safety Factor Porosity	0.00000 0.00000 2.0 0.33	Invert Level (m) Time to half empty (mins) Width (m) Length (m)	65.020 0 25.000 I 1.920	Slope (1:X) Depth (m) nf Depth (m)	5000.0 0.300						
Node S20-1 Carpark Storage Structure											
Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr) Safety Factor Porosity	0.00000 0.00000 2.0 0.33	Invert Level (m) Time to half empty (mins) Width (m) Length (m)	64.643 0 25.000 I 26.720	Slope (1:X) Depth (m) nf Depth (m)	5000.0 0.300						
Node S30-2 Carpark Storage Structure											
Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr) Safety Factor Porosity	0.00000 0.00000 2.0 0.33	Invert Level (m) Time to half empty (mins) Width (m) Length (m)	64.186 0 25.000 I 4.800	Slope (1:X) Depth (m) nf Depth (m)	5000.0 0.300						
	<u>Node Sa</u>	80-3 Carpark Storage Structu	ure								
Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr) Safety Factor Porosity	0.00000 0.00000 2.0 0.33	Invert Level (m) Time to half empty (mins) Width (m) Length (m)	64.031 0 25.000 I 47.840	Slope (1:X) Depth (m) nf Depth (m)	5000.0 0.300						
	<u>Node S4</u>	10-2 Carpark Storage Structu	ure								
Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr) Safety Factor Porosity	0.00000 0.00000 2.0 0.33	Invert Level (m) Time to half empty (mins) Width (m) Length (m)	64.082 0 25.000 I 20.160	Slope (1:X) Depth (m) nf Depth (m)	5000.0 0.300						
	<u>Node S4</u>	10-3 Carpark Storage Structu	<u>ure</u>								
Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr) Safety Factor Porosity	0.00000 0.00000 2.0 0.33	Invert Level (m) Time to half empty (mins) Width (m) Length (m)	63.853 0 25.000 I 21.160	Slope (1:X) Depth (m) nf Depth (m)	5000.0 0.300						

CAUSEWAY 🚱	ael Punch and Partners Li	 File: 182186 Priorslar Network: Storm Prop Marie Claire Daly 19/03/2020 	osed Foul Wate	er Drainage I Residential							
Node S50-2 Carpark Storage Structure											
Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr) Safety Factor Porosity	0.00000 Time to I 2.0	Invert Level (m) 63.6 nalf empty (mins) 0 Width (m) 25.0 Length (m) 18.0	Depth (m) 00 Inf Depth (m)	5000.0 0.300							
	Node S61-1 Carpa	ark Storage Structure									
Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr) Safety Factor Porosity	0.00000 Time to I 2.0	Invert Level (m) 62.9 nalf empty (mins) 840 Width (m) 25.0 Length (m) 10.8	Depth (m) 00 Inf Depth (m)	5000.0 0.300							
Node S51-2 Carpark Storage Structure											
Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr) Safety Factor Porosity	0.00000 Time to I 2.0	Invert Level (m) 63.2 nalf empty (mins) 600 Width (m) 25.0 Length (m) 34.0	Depth (m) 00 Inf Depth (m)	5000.0 0.300							
	Node S50-3 Carpark Storage Structure										
Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr) Safety Factor Porosity	0.00000 Time to I 2.0	Invert Level (m) 63.2 nalf empty (mins) 360 Width (m) 25.0 Length (m) 12.6	Depth (m) 00 Inf Depth (m)	5000.0 0.300							
	Node S50-4 Carpa	ark Storage Structure									
Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr) Safety Factor Porosity	0.00000 Time to I 2.0	Invert Level (m) 63.5 nalf empty (mins) 0 Width (m) 25.0 Length (m) 35.2	Depth (m) 00 Inf Depth (m)	5000.0 0.300							
	Node S60-7 Carpa	ark Storage Structure									
Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr) Safety Factor Porosity	0.00000 Time to I 2.0	Invert Level (m) 62.9 nalf empty (mins) Width (m) 25.0 Length (m) 13.0	Depth (m) D0 Inf Depth (m)	5000.0 0.300							
	Node S10-10 Depth	Area Storage Structure									
Base Inf Coefficient (m/hi Side Inf Coefficient (m/hi			Invert Level (m) o half empty (mins)	61.903							
	Pepth Area Inf Area (m) (m²) (m²) 0.000 75.0 0.0		Area m²) 0.0								
	Node S10-12 Depth	Area Storage Structure									
Base Inf Coefficient (m/hi Side Inf Coefficient (m/hi			Invert Level (m) o half empty (mins)	61.599							

CAUSEWAY 🛟		Partners Lt		:: Storm aire Daly	rsland 2022 SI Proposed /	Page 16 Foul Water Drainage Priorsland Residential Dublin	
	Depth (m) 0.000	Area (m²) 23.0	Inf Area (m²) 0.0	Depth (m) 1.610	Area (m²) 187.0	Inf Area (m²) 0.0	

Page 17 Foul Water Drainage Priorsland Residential Dublin

|--|

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	S10-0	10	63.997	0.080	14.4	0.1297	0.0000	ОК
15 minute winter	S10-1	10	63.709	0.160	35.0	0.2869	0.0000	ОК
2160 minute winter	S10-2	2100	63.704	0.212	3.4	0.5249	0.0000	ОК
2160 minute winter	S10-3	2100	63.704	0.382	4.4	0.7153	0.0000	SURCHARGED
2160 minute winter	S10-4	2100	63.704	0.562	7.4	277.6591	0.0000	SURCHARGED
2160 minute winter	S10-5	2100	63.704	0.702	0.5	1.0367	0.0000	SURCHARGED
1440 minute winter	S20-0	1320	63.897	0.097	0.9	0.1526	0.0000	ОК
1440 minute winter	S20-1	1320	63.897	0.445	4.6	104.8427	0.0000	SURCHARGED
15 minute winter	S20-2	15	63.361	0.017	0.4	0.0195	0.0000	ОК
4320 minute winter	S20-3	3660	63.164	0.108	0.4	0.1219	0.0000	ОК
4320 minute winter	S10-6	3660	63.164	0.414	0.7	0.4725	0.0000	SURCHARGED
2160 minute winter	S30-0	1740	64.047	0.517	1.0	0.9296	0.0000	SURCHARGED
2160 minute winter	S30-1	1740	64.047	0.860	2.4	1.8671	0.0000	SURCHARGED
2160 minute winter	S30-2	1740	64.047	0.944	3.7	2.2552	0.0000	SURCHARGED
2160 minute winter	S30-3	1740	64.047	1.335	7.7	233.5727	0.0000	SURCHARGED
4320 minute winter	S10-7	3660	63.164	0.494	1.2	0.5639	0.0000	SURCHARGED
15 minute winter	S40-0	12	64.133	0.768	26.0	1.1376	0.0000	SURCHARGED
15 minute winter	S40-1	12	64.103	0.967	37.5	2.3570	0.0000	SURCHARGED
15 minute winter	S41-0	11	63.778	0.758	4.8	0.8576	0.0000	SURCHARGED
15 minute winter	S40-2	11	63.778	0.908	76.2	2.3740	0.0000	SURCHARGED
4320 minute winter	S40-3	3300	63.274	0.580	4.1	224.7586	0.0000	SURCHARGED

Link Event (Outflow)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m ³)
15 minute winter	S10-0	S10.000	S10-1	14.3	0.563	0.158	1.4654	. ,
15 minute winter	S10-1	S10.001	S10-2	33.8	0.673	0.240	0.6045	
15 minute winter	S10-2	S10.002	S10-3	72.8	1.070	0.516	2.3586	
15 minute winter	S10-3	S10.003	S10-4	95.4	2.167	0.676	1.6595	
15 minute winter	S10-4	S10.004	S10-5	9.9	0.303	0.070	1.8205	
15 minute summer	S10-4	Infiltration		0.7				
1440 minute winter	S10-5	Hydro-Brake [®]	S10-6	0.3				
15 minute summer	S20-0	S20.000	S20-1	14.4	1.211	0.341	0.7111	
30 minute summer	S20-1	Hydro-Brake [®]	S20-2	0.4				
15 minute summer	S20-1	Infiltration		0.3				
15 minute winter	S20-2	S20.002	S20-3	0.4	0.348	0.006	0.1080	
5760 minute winter	S20-3	S20.003	S10-6	0.4	0.289	0.006	1.8002	
60 minute winter	S10-6	S10.006	S10-7	0.8	0.285	0.007	0.0603	
15 minute winter	S30-0	S30.000	S30-1	19.8	0.648	0.219	1.5926	
15 minute winter	S30-1	S30.001	S30-2	52.0	0.870	0.319	0.7540	
15 minute winter	S30-2	S30.002	S30-3	79.3	1.968	0.562	3.3396	
1440 minute winter	S30-3	Hydro-Brake [®]	S10-7	0.9				
15 minute summer	S30-3	Infiltration		0.7				
60 minute summer	S10-7	S10.007	S10-8	1.6	0.284	0.009	0.4259	
15 minute winter	S40-0	S40.000	S40-1	-16.2	-0.412	-0.383	1.3653	
15 minute winter	S40-1	S40.001	S40-2	33.0	0.831	1.090	3.0714	
30 minute summer	S41-0	S41.000	S40-2	-4.7	0.360	-0.111	0.3616	
15 minute winter	S40-2	S40.002	S40-3	70.6	2.433	1.775	0.8375	
30 minute summer	S40-3	Hydro-Brake [®]	S10-8	0.6				
15 minute summer	S40-3	Infiltration		0.7				

Flow+ v10.2 Copyright © 1988-2022 Causeway Technologies Ltd

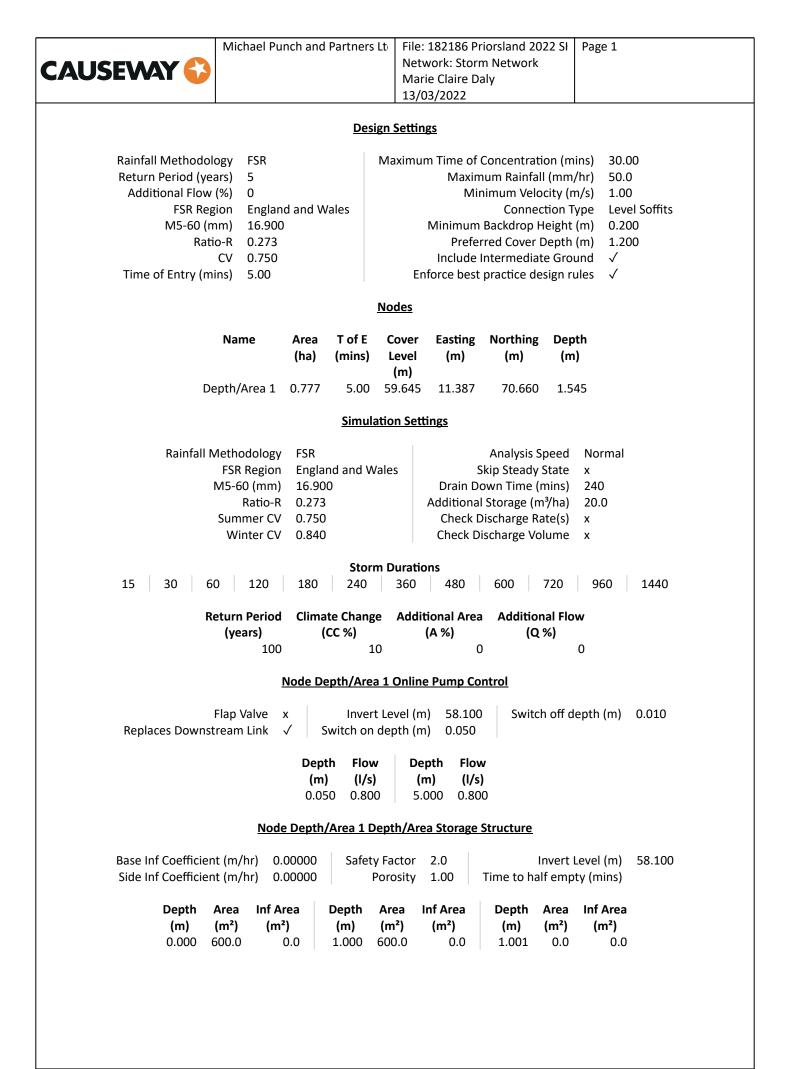
Page 18 Foul Water Drainage Priorsland Residential Dublin

Results for 100 year +10% CC Critical Storm Duration. Lowest mass balance: 99.75%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
4320 minute winter	S10-8	3660	63.164	0.658	2.0	1.2905	0.0000	SURCHARGED
4320 minute winter	Swale1a	3660	63.164	0.843	36.8	1.4891	0.0000	SURCHARGED
4320 minute winter	swale1b	3720	63.161	0.899	36.8	1.5887	0.0000	SURCHARGED
15 minute winter	S50-0	11	63.373	0.443	8.0	0.5015	0.0000	SURCHARGED
		4020	<u> </u>	0.000	1 5	0.0057	0.0000	
4320 minute winter	S50-1	4020	63.368	0.606	1.5	0.6857	0.0000	SURCHARGED
4320 minute winter	S50-2	4020	63.368	0.712	2.8	2.0422	0.0000	SURCHARGED
4320 minute winter	S51-0	4020	63.372	0.743	0.6	0.8401	0.0000	FLOOD RISK
4320 minute winter	S51-1	4020	63.372	0.899	0.8	1.0164	0.0000	SURCHARGED
4320 minute winter	S52-0	4020	63.372	0.872	0.6	0.9859	0.0000	SURCHARGED
4320 minute winter	S51-2	4020	63.372	0.938	36.9	32.5970	0.0000	FLOOD RISK
4320 minute winter	S50-3	4020	63.367	0.947	38.7	11.0389	0.0000	SURCHARGED
4320 minute winter	S50-4	4020	63.337	1.162	38.7	338.4278	0.0000	SURCHARGED
4320 minute winter	S10-9	3720	63.157	1.062	39.8	3.8694	0.0000	FLOOD RISK
4320 minute winter	S10-10	3720	63.155	1.251	40.0	314.3839	0.0000	FLOOD RISK
4320 minute winter	S60-0	3720	63.129	0.079	0.3	0.1177	0.0000	ОК
4320 minute winter	S60-1	3720	63.129	0.376	1.1	0.8096	0.0000	SURCHARGED
4320 minute winter	S60-2	3720	63.129	0.483	1.9	1.1254	0.0000	SURCHARGED
4320 minute winter	S60-3	3720	63.129	0.804	3.1	2.3346	0.0000	SURCHARGED
4320 minute winter	S60-4	3720	63.129	0.930	4.2	3.2073	0.0000	FLOOD RISK
4320 minute winter	S60-5	3720	63.129	1.073	4.7	2.2419	0.0000	FLOOD RISK
4320 minute winter	S60-6	3720	63.129	1.165	5.2	152.5213	0.0000	FLOOD RISK

Link Event (Outflow)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m ³)
30 minute summer	S10-8	S10.008	Swale1a	7.4	0.542	0.033	0.8979	
2160 minute winter	Swale1a	Swale1a	swale1b	37.1	0.351	0.175	4.5986	
2160 minute winter	swale1b	swale1b	S10-9	37.1	0.385	0.175	8.1970	
15 minute summer	S50-0	S50.000	S50-1	-13.8	-0.351	-0.331	1.0275	
15 minute summer	S50-0	Orifice	S40-2	0.0				0.0
15 minute summer	S50-1	S50.001	S50-2	-17.3	0.475	-0.414	0.6526	
15 minute winter	S50-2	S50.002	S50-3	39.3	0.989	1.319	2.2268	
15 minute summer	S51-0	S51.000	S51-1	-8.5	0.464	-0.214	1.0556	
15 minute summer	S51-1	S51.001	S51-2	-13.5	-0.236	-0.191	0.6692	
15 minute winter	S52-0	S52.000	S51-2	4.4	0.317	0.069	1.0115	
15 minute winter	S51-2	S51.002	S50-3	52.3	0.475	0.455	0.4661	
15 minute winter	S50-3	S50.003	S50-4	142.4	1.934	1.239	4.8385	
180 minute winter	S50-4	Hydro-Brake [®]	S10-9	2.6				
15 minute summer	S50-4	Infiltration		1.1				
2160 minute winter	S50-4	Depth/Flow	Swale1a	35.0				2606.7
15 minute winter	S10-9	S10.009	S10-10	44.9	1.064	0.122	3.3620	
30 minute winter	S10-10	S10.010	S10-11	41.0	0.598	0.348	7.2924	
15 minute winter	S60-0	S60.000	S60-1	9.4	0.343	0.137	2.7658	
15 minute winter	S60-1	S60.001	S60-2	35.1	0.712	0.594	2.4382	
15 minute winter	S60-2	S60.002	S60-3	54.5	0.800	0.855	6.7827	
15 minute winter	S60-3	S60.003	S60-4	78.2	1.111	1.326	3.0975	
15 minute winter	S60-4	S60.004	S60-5	117.3	1.106	1.103	5.2862	
15 minute winter	S60-5	S60.005	S60-6	133.3	2.120	1.254	1.9663	
30 minute winter	S60-6	S60.006	S60-7	47.6	0.735	0.480	3.5856	
15 minute summer	S60-6	Infiltration		0.5				

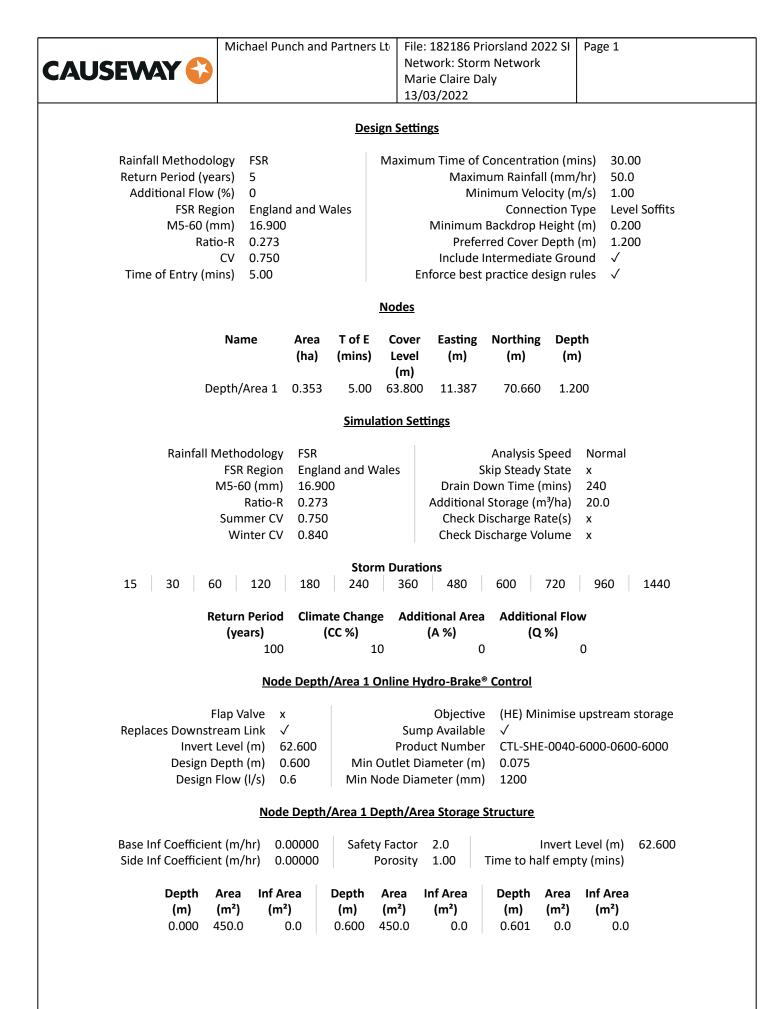
Flow+ v10.2 Copyright © 1988-2022 Causeway Technologies Ltd



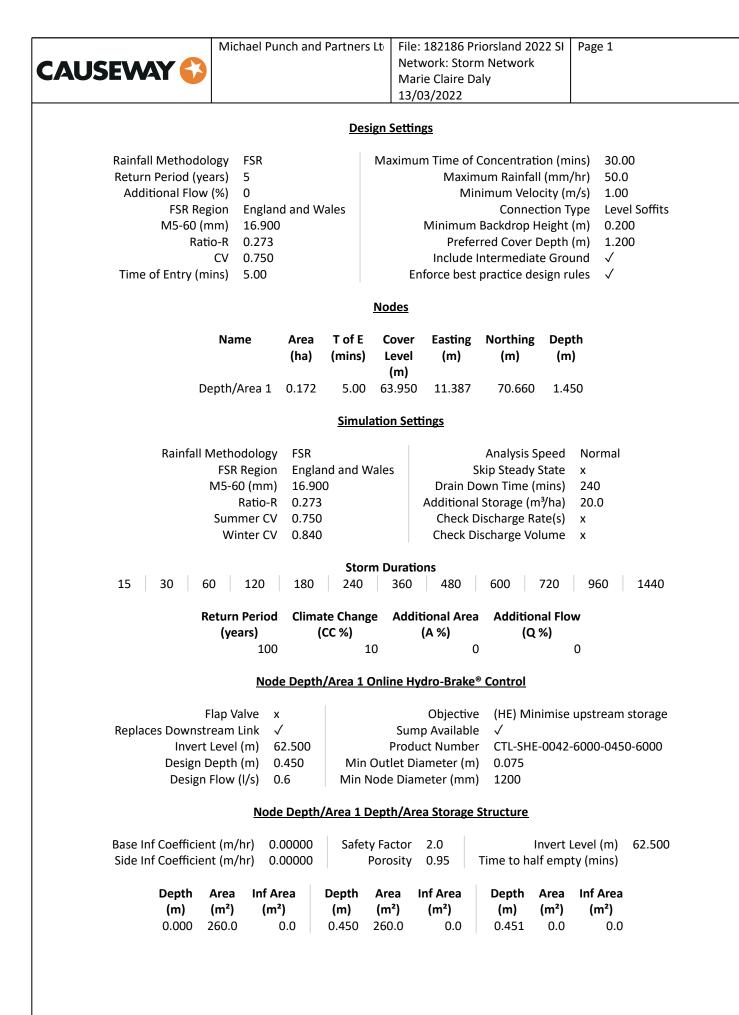
Page 19 Foul Water Drainage Priorsland Residential Dublin

Results for 100 year +10% CC Critical Storm Duration. Lowest mass balance: 99.75%

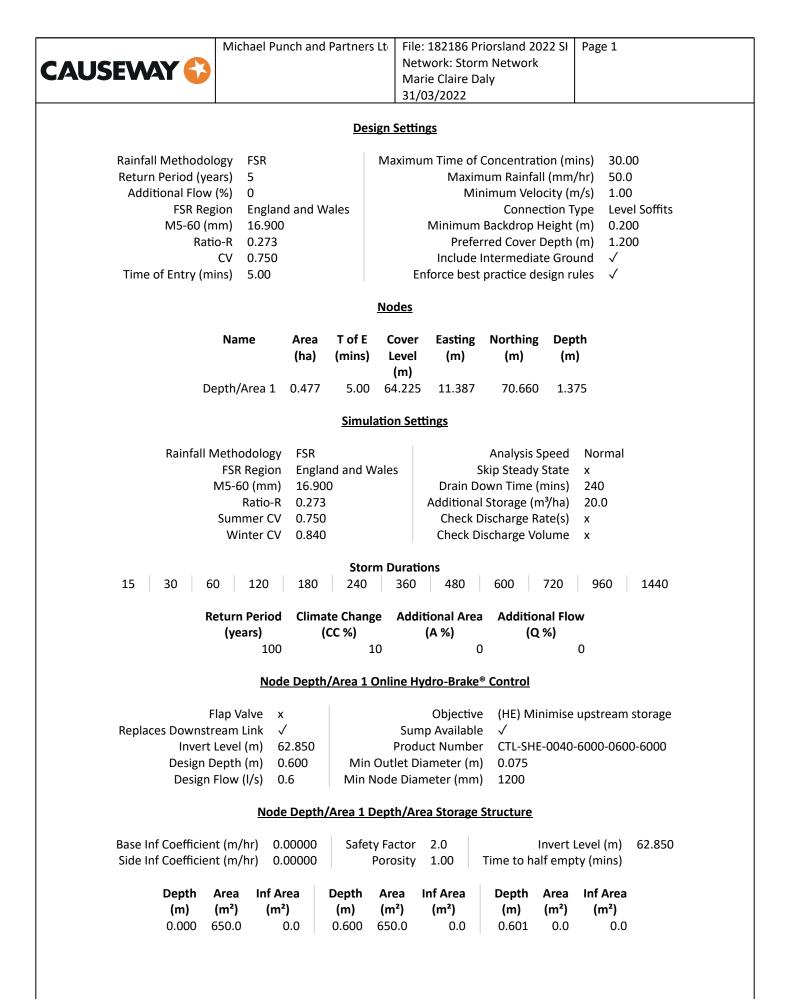
Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
4320 minute winter	S61-0	3720	62.880	0.580	35.0	0.6556	0.0000	SURCHARGED
4320 minute winter	S61-1	3720	63.053	0.943	35.2	10.4831	0.0000	FLOOD RISK
4320 minute winter	S61-2	3720	63.108	1.186	35.1	1.3409	0.0000	FLOOD RISK
4320 minute winter	S60-7	3720	63.129	1.270	35.3	26.1256	0.0000	FLOOD RISK
4320 minute winter	S10-11	3720	63.133	1.395	39.5	1.9968	0.0000	SURCHARGED
4320 minute winter	S10-12	3720	63.133	1.534	7.0	157.8697	0.0000	FLOOD RISK
4320 minute winter	S10-13	3720	63.133	1.623	4.9	2.8681	0.0000	FLOOD RISK
600 minute summer	Stream	900	62.064	1.129	4.6	0.0000	0.0000	ОК


Link Event (Outflow)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m ³)
4320 minute winter	S61-0	S61.000	S61-1	-35.0	-0.880	-0.881	1.2845	
2880 minute winter	S61-0	Depth/Flow	S51-2	35.0				3371.2
2880 minute winter	S61-1	S61.001	S61-2	-35.1	-0.498	-0.501	3.3160	
2880 minute winter	S61-2	S61.002	S60-7	-35.1	-0.498	-0.496	1.0506	
30 minute winter	S60-7	S60.007	S10-11	54.9	1.001	0.516	0.5941	
30 minute winter	S10-11	S10.011	S10-12	84.5	1.040	0.689	6.4573	
15 minute winter	S10-12	S10.012	S10-13	47.9	0.548	0.121	7.2243	
10080 minute winter	S10-13	S10.013	Stream	5.0	0.197	0.027	0.1831	2523.0

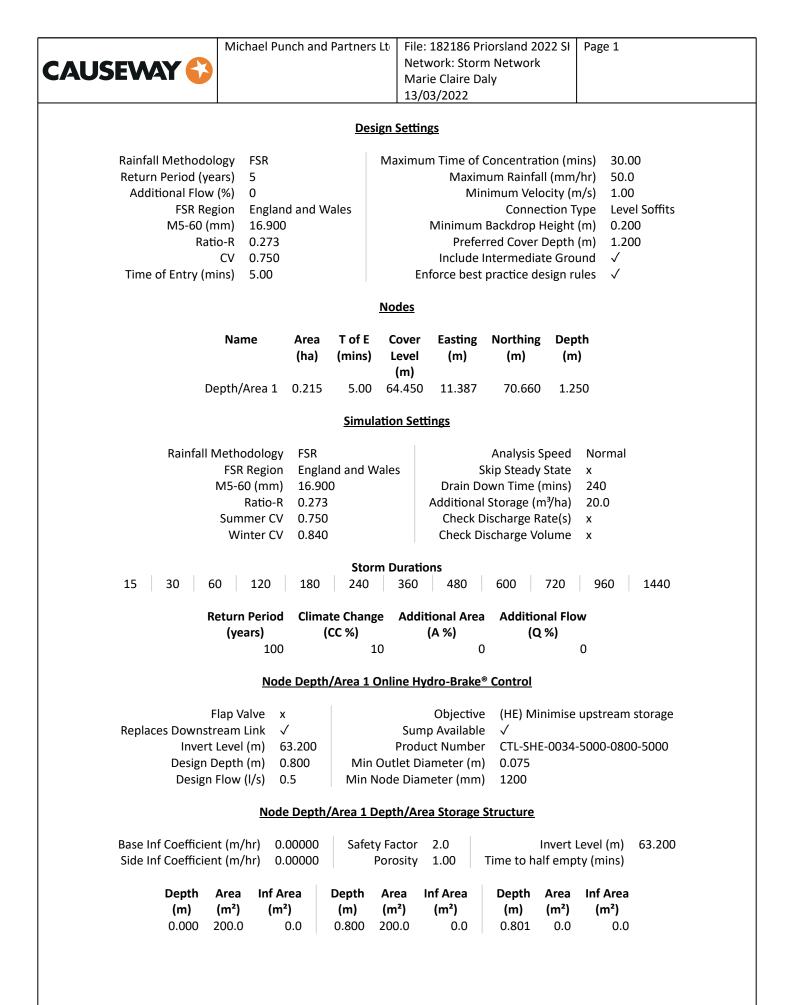
Results for 100 year +10% CC Critical Storm Duration. Lowest mass balance: 99.99%


Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
1440 minute winter	Depth/Area 1	1440	59.095	0.995	19.4	607.3085	0.0000	ОК
15	Link Event (Outflow) minute summer	-	S de Area 1	Link Pump	Outflow (I/s) 0.8	Discharge Vol (m ³) 11.8		

Page 2


Node Event US Node		Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)		ode (m³)	Flood (m³)	Status
1440 minute winter	Depth/Area 1	/	63.179	0.579	8.8	-	7579	0.0000	ОК
	nk Event Outflow)	US Node		Link	Outfl (I/s	-	Discha Vol (r		
•	•	Depth/Area	a1 Hy	dro-Brake	() -) 0.6	•	18.0	

Results for 100 year +10% CC Critical Storm Duration. Lowest mass balance: 100.00%


Node Event	Node Event US Node		Level (m)	Depth	Inflow	Node Vol (m³)	Flood (m³)	Status
1440 minute winter	Depth/Area 1	(mins) 1380	(m) 62.937	(m) 0.437	(I/s) 4.3	109.0792	(m ²) 0.0000	ОК
	nk Event Jutflow)	US Node		Link	Outflo (I/s)		0	
•		epth/Area	1 Hyd	ro-Brake®	,		9.2	

Results for 100 year +10% CC Critical Storm Duration. Lowest mass balance: 99.99%

Node Event	t US Node		Level (m)			Node Vol (m³)	Flood (m³)	Status
1440 minute winter	Depth/Area 1	1440	63.415	0.565	11.9	370.9238	0.0000	ОК
(0	Link Event (Outflow) 1440 minute winter		a1 Hyd	Link Iro-Brake ^o	Outfle (I/s) Vol (r		

Page 2

Results for 100 year +10% CC Critical Storm Duration. Lowest mass balance: 100.00%

Node Event	t US Node		Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
1440 minute winter	Depth/Area 1	1410	63.957	0.757	5.4	153.9417	0.0000	ОК
(C	nk Event Outflow) Ninute winter I	US Node Depth/Are	a1 Hyd	Link dro-Brake	Outfle (I/s) Vol (r	0	

Appendix D Foul Water Calculations - Causeway Flow Modelling

Design Settings

Frequency of use (kDU)	0.00	Minimum Velocity (m/s)	0.75
Flow per dwelling per day (l/day)	2763	Connection Type	Level Soffits
Domestic Flow (l/s/ha)	0.0	Minimum Backdrop Height (m)	0.000
Industrial Flow (l/s/ha)	0.0	Preferred Cover Depth (m)	1.200
Additional Flow (%)	0	Include Intermediate Ground	\checkmark

<u>Nodes</u>

Name	Cover Level (m)	Manhole Type	Easting (m)	Northing (m)	Depth (m)
F1-0	65.104	Adoptable	722101.481	723945.659	1.350
F1-1	65.298	Adoptable	722106.942	723973.445	2.016
F1-2	65.408	Adoptable	722112.433	724001.225	2.411
F1-3	65.305	Adoptable	722147.419	723994.211	2.518
F2-0	64.596	Adoptable	722165.981	723911.750	1.350
F2-1	64.819	Adoptable	722173.217	723947.944	2.263
F1-4	65.133	Adoptable	722181.117	723987.455	2.814
F1-5	64.958	Adoptable	722215.073	723980.613	2.843
F3-0	64.441	Adoptable	722232.450	723897.535	1.425
F3-1	64.608	Adoptable	722240.195	723935.942	2.245
F1-6	64.791	Adoptable	722248.019	723974.049	2.874
F4-0	64.269	Adoptable	722263.760	723866.382	1.425
F4-1	64.442	Adoptable	722277.093	723889.213	2.039
F1-7	64.561	Adoptable	722291.681	723965.298	2.906
F1-8	63.915	Adoptable	722366.837	723950.235	2.711
F1-9	63.547	Adoptable	722417.911	723939.998	2.649
F5-0	64.268	Adoptable	722310.733	723885.541	1.425
F5-1	64.056	Adoptable	722339.769	723881.469	1.702
F6-0	63.919	Adoptable	722337.216	723793.843	1.425
F7-0	63.752	Adoptable	722389.546	723848.033	1.425
F5-2	63.678	Adoptable	722382.198	723840.424	2.263
F5-3	63.333	Adoptable	722423.572	723802.692	2.247
F5-4	63.349	Adoptable	722459.574	723839.445	2.566
F5-5	63.138	Adoptable	722459.118	723884.800	2.622
F5-6	63.207	Adoptable	722459.169	723916.881	2.880
F5-7	63.263	Adoptable	722459.506	723927.027	2.996
F1-10	63.322	Adoptable	722458.429	723931.877	3.084
EXFMH	61.154	Adoptable	722464.757	723954.589	1.055

AUSEWAY	artners Lt	File: 182186 Priorsland 2022 SI Network: Foul Proposed Marie Claire Daly 19/03/2020				Page 2 Foul Water Drainage Priorsland Residential Dublin			
				<u>Linl</u>	<u>ks</u>				
Nam	ne US	DS	Length	ks (mm) /	US IL	DS IL	Fall	Slope	Dia
	Node	Node	(m)	n	(m)	(m)	(m)	(1:X)	(mm)
F1.00		F1-1	28.318	1.500	63.754	63.282	0.472	60.0	150
F1.00		F1-2	28.317	1.500		63.072	0.210	134.8	150
F1.00		F1-3	35.682	1.500	62.997	62.787	0.210	170.0	225
F1.00		F1-4	34.369	1.500		62.585	0.202	170.0	225
F2.00		F2-1	36.910	1.500	63.246	62.631	0.615	60.0	150
F2.00		F1-4	40.293	1.500	62.556	62.319	0.237	170.0	225
F1.00		F1-5	34.638	1.500		62.115	0.204	170.0	225
F1.00		F1-6	33.594	1.500		61.917	0.198	170.0	225
F3.00		F3-1	39.180	1.500		62.363	0.653	60.0	225
F3.00		F1-6	38.902	1.500	62.363	62.134	0.229	170.0	225
F1.00		F1-7	44.530	1.500		61.655	0.262	170.0	225
F4.00		F4-1	26.439	1.500		62.403	0.441	60.0	225
F4.00		F1-7	77.471	1.500	62.403	61.947	0.456	170.0	225
F1.00		F1-8	76.651	1.500		61.204	0.451	170.0	225
F1.00		F1-9	52.090	1.500	61.204	60.898	0.306	170.0	225
F1.00		F1-10	41.324	1.500		60.655	0.243	170.0	225
F5.00		F5-1	29.320	1.500		62.354	0.489	60.0	225
F5.00		F5-2	59.033	1.500		62.007	0.347	170.0	225
F6.00		F5-2	64.755	1.500		61.415	1.079	60.0	225
F7.00		F5-2	10.578	1.500	62.327	62.151	0.176	60.1	225
F5.00		F5-3	55.996	1.500		61.086	0.329	170.0	225
F5.00		F5-4	51.448	1.500		60.783	0.303	170.0	225
F5.00		F5-5	45.357	1.500		60.516	0.267	170.0	225
F5.00	DS F5-5	F5-6	32.081	1.500	60.516	60.327	0.189	170.0	225

Name	Pro Vel @ 1/3 Q (m/s)	Vel (m/s)	Cap (l/s)	Flow (I/s)	US Depth (m)	DS Depth (m)	Σ Area (ha)	Σ Dwellings (ha)	Σ Units (ha)	Σ Add Inflow (ha)	Pro Depth (mm)	Pro Velocity (m/s)
F1.000	0.000	1.132	20.0	0.0	1.200	1.866	0.000	0	0.0	0.0	0	0.000
F1.001	0.000	0.753	13.3	0.0	1.866	2.186	0.000	0	0.0	0.0	0	0.000
F1.002	0.000	0.879	35.0	0.0	2.186	2.293	0.000	0	0.0	0.0	0	0.000
F1.003	0.000	0.879	35.0	0.0	2.293	2.323	0.000	0	0.0	0.0	0	0.000
F2.000	0.000	1.132	20.0	0.0	1.200	2.038	0.000	0	0.0	0.0	0	0.000
F2.001	0.000	0.879	35.0	0.0	2.038	2.589	0.000	0	0.0	0.0	0	0.000
F1.004	0.000	0.879	35.0	0.0	2.589	2.618	0.000	0	0.0	0.0	0	0.000
F1.005	0.000	0.879	35.0	0.0	2.618	2.649	0.000	0	0.0	0.0	0	0.000
F3.000	0.000	1.483	59.0	0.0	1.200	2.020	0.000	0	0.0	0.0	0	0.000
F3.001	0.000	0.879	35.0	0.0	2.020	2.432	0.000	0	0.0	0.0	0	0.000
F1.006	0.000	0.879	35.0	0.0	2.649	2.681	0.000	0	0.0	0.0	0	0.000
F4.000	0.000	1.484	59.0	0.0	1.200	1.814	0.000	0	0.0	0.0	0	0.000
F4.001	0.000	0.879	35.0	0.0	1.814	2.389	0.000	0	0.0	0.0	0	0.000
F1.007	0.000	0.879	35.0	0.0	2.681	2.486	0.000	0	0.0	0.0	0	0.000
F1.008	0.000	0.879	35.0	0.0	2.486	2.424	0.000	0	0.0	0.0	0	0.000
F1.009	0.000	0.879	35.0	0.0	2.424	2.442	0.000	0	0.0	0.0	0	0.000
F5.000	0.000	1.484	59.0	0.0	1.200	1.477	0.000	0	0.0	0.0	0	0.000
F5.001	0.000	0.879	35.0	0.0	1.477	1.446	0.000	0	0.0	0.0	0	0.000
F6.000	0.000	1.483	59.0	0.0	1.200	2.038	0.000	0	0.0	0.0	0	0.000
F7.000	0.000	1.482	58.9	0.0	1.200	1.302	0.000	0	0.0	0.0	0	0.000
F5.002	0.000	0.879	35.0	0.0	2.038	2.022	0.000	0	0.0	0.0	0	0.000
F5.003	0.000	0.879	35.0	0.0	2.022	2.341	0.000	0	0.0	0.0	0	0.000
F5.004	0.000	0.879	35.0	0.0	2.341	2.397	0.000	0	0.0	0.0	0	0.000
F5.005	0.000	0.879	35.0	0.0	2.397	2.655	0.000	0	0.0	0.0	0	0.000

Foul Water Drainage Priorsland Residential Dublin

<u>Links</u>

Name		DS Node	-	ks (mm) / n				Slope (1:X)	-
F5.006	F5-6	F5-7	10.152	1.500	60.327	60.267	0.060	170.0	225
F5.007	F5-7	F1-10	4.968	1.500	60.267	60.238	0.029	170.0	225
F1.010	F1-10	EXFMH	23.577	1.500	60.238	60.099	0.139	170.0	225

Name	Pro Vel @ 1/3 Q (m/s)	Vel (m/s)	Cap (I/s)	Flow (l/s)	US Depth (m)	DS Depth (m)	Σ Area (ha)	Σ Dwellings (ha)	Σ Units (ha)	Σ Add Inflow (ha)	Pro Depth (mm)	Pro Velocity (m/s)
F5.006	0.000	0.879	35.0	0.0	2.655	2.771	0.000	0	0.0	0.0	0	0.000
F5.007	0.000	0.879	35.0	0.0	2.771	2.859	0.000	0	0.0	0.0	0	0.000
F1.010	0.000	0.879	35.0	0.0	2.859	0.830	0.000	0	0.0	0.0	0	0.000

Pipeline Schedule

Link	Length (m)	Slope (1:X)	Dia (mm)	Link Type	US CL (m)	US IL (m)	US Depth (m)	DS CL (m)	DS IL (m)	DS Depth (m)
F1.000	28.318	60.0	150	Circular	65.104	63.754	1.200	65.298	63.282	1.866
F1.001	28.317	134.8	150	Circular	65.298	63.282	1.866	65.408	63.072	2.186
F1.002	35.682	170.0	225	Circular	65.408	62.997	2.186	65.305	62.787	2.293
F1.003	34.369	170.0	225	Circular	65.305	62.787	2.293	65.133	62.585	2.323
F2.000	36.910	60.0	150	Circular	64.596	63.246	1.200	64.819	62.631	2.038
F2.001	40.293	170.0	225	Circular	64.819	62.556	2.038	65.133	62.319	2.589
F1.004	34.638	170.0	225	Circular	65.133	62.319	2.589	64.958	62.115	2.618
F1.005	33.594	170.0	225	Circular	64.958	62.115	2.618	64.791	61.917	2.649
F3.000	39.180	60.0	225	Circular	64.441	63.016	1.200	64.608	62.363	2.020
F3.001	38.902	170.0	225	Circular	64.608	62.363	2.020	64.791	62.134	2.432
F1.006	44.530	170.0	225	Circular	64.791	61.917	2.649	64.561	61.655	2.681
F4.000	26.439	60.0	225	Circular	64.269	62.844	1.200	64.442	62.403	1.814
F4.001	77.471	170.0	225	Circular	64.442	62.403	1.814	64.561	61.947	2.389
F1.007	76.651	170.0	225	Circular	64.561	61.655	2.681	63.915	61.204	2.486
F1.008	52.090	170.0	225	Circular	63.915	61.204	2.486	63.547	60.898	2.424
F1.009	41.324	170.0	225	Circular	63.547	60.898	2.424	63.322	60.655	2.442
F5.000	29.320	60.0	225	Circular	64.268	62.843	1.200	64.056	62.354	1.477

Link	US Node	Dia (mm)	Node Type	МН Туре	DS Node	Dia (mm)	Node Type	МН Туре
F1.000	F1-0	1200	Manhole	Adoptable	F1-1	1200	Manhole	Adoptable
F1.001	F1-1	1200	Manhole	Adoptable	F1-2	1200	Manhole	Adoptable
F1.002	F1-2	1200	Manhole	Adoptable	F1-3	1200	Manhole	Adoptable
F1.003	F1-3	1200	Manhole	Adoptable	F1-4	1200	Manhole	Adoptable
F2.000	F2-0	1200	Manhole	Adoptable	F2-1	1200	Manhole	Adoptable
F2.001	F2-1	1200	Manhole	Adoptable	F1-4	1200	Manhole	Adoptable
F1.004	F1-4	1200	Manhole	Adoptable	F1-5	1200	Manhole	Adoptable
F1.005	F1-5	1200	Manhole	Adoptable	F1-6	1200	Manhole	Adoptable
F3.000	F3-0	1200	Manhole	Adoptable	F3-1	1200	Manhole	Adoptable
F3.001	F3-1	1200	Manhole	Adoptable	F1-6	1200	Manhole	Adoptable
F1.006	F1-6	1200	Manhole	Adoptable	F1-7	1200	Manhole	Adoptable
F4.000	F4-0	1200	Manhole	Adoptable	F4-1	1200	Manhole	Adoptable
F4.001	F4-1	1200	Manhole	Adoptable	F1-7	1200	Manhole	Adoptable
F1.007	F1-7	1200	Manhole	Adoptable	F1-8	1200	Manhole	Adoptable
F1.008	F1-8	1200	Manhole	Adoptable	F1-9	1200	Manhole	Adoptable
F1.009	F1-9	1200	Manhole	Adoptable	F1-10	1200	Manhole	Adoptable
F5.000	F5-0	1200	Manhole	Adoptable	F5-1	1200	Manhole	Adoptable

JSEW	AY 🧲		Michael Punch and Partners Lt				File: 182186 Priorsland 2022 SI Network: Foul Proposed Marie Claire Daly 19/03/2020				Page 4 Foul Water Drainage Priorsland Residential Dublin		
				<u> </u>	Pipeline S	<u>chedule</u>							
Link	Length (m)	Slope (1:X)	Dia (mm)	Link Type	US CL (m)	US IL (m)	US Depth (m)	DS ((m		SIL [m)	OS Depth (m)		
F5.001		170.0	225	Circular	64.056	62.354	1.477	63.6		.007	1.446		
F6.000	64.755	60.0	225	Circular	63.919	62.494	1.200	63.6	78 61	.415	2.038		
F7.000	10.578	60.1	225	Circular	63.752	62.327	1.200	63.6	78 62	.151	1.302		
F5.002	55.996	170.0	225	Circular	63.678	61.415	2.038	63.3	33 <mark>61</mark>	.086	2.022		
F5.003	51.448	170.0	225	Circular	63.333	61.086	2.022	63.3	49 60	.783	2.341		
F5.004	45.357	170.0	225	Circular	63.349	60.783	2.341	63.1	38 <mark>60</mark>	.516	2.397		
F5.005	32.081	170.0	225	Circular	63.138	60.516	2.397	63.2	07 60	.327	2.655		
F5.006	10.152	170.0	225	Circular	63.207	60.327	2.655	63.2	63 <mark>60</mark>	.267	2.771		
F5.007	4.968	170.0	225	Circular	63.263	60.267	2.771	63.3	22 60	.238	2.859		
F1.010	23.577	170.0	225	Circular	63.322	60.238	2.859	61.1	54 60	.099	0.830		
	Link	US	Dia	Node	МН	DS		No		МН			
			(mm)	Туре	Туре	Noc	• •	Тур		Туре			
		F5-1		Manhole	Adoptab			Manh		doptabl			
		F6-0		Manhole	Adoptab			Manh		doptabl			
		F7-0 F5-2		Manhole Manhole	Adoptabl		1200 1200	Manł Manł		doptabl			
		F5-2 F5-3		Manhole	Adoptabl Adoptabl			Manl		doptabl doptabl			
		F5-4		Manhole	Adoptabl		1200	Man		doptabl			
		F5-5		Manhole	Adoptabl			Manh		doptabl			
		F5-6		Vanhole	Adoptabl			Manh		doptabl			
		F5-7		Vanhole	Adoptabl			Manh		doptabl			
		F1-10		Vanhole	Adoptabl			Manh		doptabl			
					Manhole S								
	-			_			.	1			5.		
Node	Easting (m)		orthing (m)	CL (m)	Depth (m)	Dia (mm)	Connectio	ns	Link	IL (m)	Dia (mm)		
F1-0	722101.48	31 723	3945.659	65.104	1.350	1200	Î						
							(54 000	60 7 5	450		
F1-1	722106.94	40 703	072 445	65.298	2.016	1200	0	0	F1.000 F1.000				
F1-1	/22106.94	+2 /23	973.445	05.298	2.010	1200	Å	T	F1.000	03.28	2 150		
						1	N 1 1						
							γ	0	F1 001	62.29	2 150		
F1_7	722112 //:	23 72/	001 225	65 /08	2 /11	1200	¥ 1	0	F1.001				
F1-2	722112.43	33 724	001.225	65.408	2.411	1200		0	F1.001 F1.001	63.28 63.07			
F1-2	722112.43	33 724	1001.225	65.408	2.411	1200							
F1-2	722112.43	33 724	1001.225	65.408	2.411	1200	$ \begin{array}{c} $			63.07	2 150		
F1-2 F1-3	722112.43				2.411	1200	↓ 1 ↓ 1	1	F1.001	63.07 62.99	2 150 7 225		
							$ \begin{array}{c} $	1 0	F1.001 F1.002	63.07 62.99	2 150 7 225		
								1 0	F1.001 F1.002 F1.002	63.07 62.99 62.78	2 150 7 225		
F1-3	722147.42	19 723	3994.211	65.305	2.518			1 0	F1.001 F1.002	63.07 62.99 62.78	150 17 225 17 225 17 225		
		19 723	3994.211	65.305			$ \begin{array}{c} $	1 0 1	F1.001 F1.002 F1.002	63.07 62.99 62.78	150 17 225 17 225 17 225		
F1-3	722147.42	19 723	3994.211	65.305	2.518	1200		1 0 1	F1.001 F1.002 F1.002	63.07 62.99 62.78	150 17 225 17 225 17 225		
F1-3	722147.42	19 723	3994.211	65.305	2.518	1200	$ \begin{array}{c} $	1 0 1 0	F1.001 F1.002 F1.002 F1.003	63.07 62.99 62.78 62.78	150 17 225 17 225 17 225 17 225 17 225		
F1-3 F2-0	722147.42	19 723 81 723	3994.211 3911.750	65.305 64.596	2.518	1200		1 0 1 0	F1.001 F1.002 F1.002 F1.003	63.07 62.99 62.78 62.78 63.24	12 150 17 225 17 225 17 225 17 225 17 225 17 225 16 150		
F1-3	722147.42	19 723 81 723	3994.211 3911.750	65.305 64.596	2.518	1200	$ \begin{array}{c} $	1 0 1 0	F1.001 F1.002 F1.002 F1.003	63.07 62.99 62.78 62.78 63.24	12 150 17 225 17 225 17 225 17 225 17 225 17 225 16 150		
F1-3 F2-0	722147.42	19 723 81 723	3994.211 3911.750	65.305 64.596	2.518	1200	$ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	1 0 1 0	F1.001 F1.002 F1.002 F1.003	63.07 62.99 62.78 62.78 63.24 62.63	12 150 17 225 17 225 17 225 16 150 11 150		

	Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections	5	Link	IL (m)	Dia (mm)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	F1-4		723987.455	65.133				1	F2.001		225
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							2	2	F1.003	62.585	225
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							/ 1	0	F1.004	62.319	225
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F1-5	722215.073	723980.613	64.958	2.843	1200	1	1	F1.004	62.115	225
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								0	F1.005	62.115	225
$ \begin{array}{c} F3.1 \\ 722240.195 \\ 723935.942 \\ 723935.942 \\ 64.608 \\ 2.245 \\ 1200 \\ 0 \\ F3.001 \\ 62.363 \\ 22 \\ 1 \\ F3.001 \\ 62.363 \\ 22 \\ F1.005 \\ 61.917 \\ 22 \\ F1.005 \\ 61.947 \\ 22 \\ F1.005 \\ 61.655 \\ 22 \\ F1.005 \\ 61.655 \\ 22 \\ F1.005 \\ 61.204 \\ 22 \\ F1.000 \\ 61.204 \\ 22 \\ F1.00$	F3-0	722232.450	723897.535	64.441	1.425	1200					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								0	F3.000	63.016	225
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F3-1	722240.195	723935.942	64.608	2.245	1200		1	F3.000	62.363	225
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							/ 1	0	F3.001	62.363	225
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	F1-6	722248.019	723974.049	64.791	2.874	1200		1			225
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							2				225
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							1	0	F1.006	61.917	225
F4-1 722277.093 723889.213 64.442 2.039 1200 1 $F4.000$ 62.403 221 1 722291.681 723965.298 64.561 2.906 1200 1 $F4.001$ 62.403 221 1 74.001 62.403 221 0 $F4.001$ 61.947 221 2 -1 723965.298 64.561 2.906 1200 1 $F4.001$ 61.947 221 71 722366.837 723950.235 63.915 2.711 1200 1 $F1.007$ 61.204 221 71 722366.837 723939.998 63.547 2.649 1200 1 $F1.008$ 61.204 221 61.97 722417.911 723939.998 63.547 2.649 1200 1 $F1.008$ 61.204 221 $75-0$ 722310.733 723885.541 64.268 1.425 1200 0 $F5.000$ 62.843 221 $76-0$ 722337.216 723793.843 </td <td>F4-0</td> <td>722263.760</td> <td>723866.382</td> <td>64.269</td> <td>1.425</td> <td>1200</td> <td>Š</td> <td></td> <td></td> <td></td> <td></td>	F4-0	722263.760	723866.382	64.269	1.425	1200	Š				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								0		62.844	225
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F4-1	722277.093	723889.213	64.442	2.039	1200	ŷ	1		62.403	225
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							1	-			225
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	F1-7	722291.681	723965.298	64.561	2.906	1200	_				
F1-8722366.837723950.235 63.915 2.711 1200 1 $F1.007$ 61.204 223 $1 \rightarrow 0$ 0 $F1.008$ 61.204 223 $F1-9$ 722417.911723939.998 63.547 2.649 1200 1 $F1.008$ 60.898 223 $1 \rightarrow 0$ 0 $F1.009$ 60.898 223 $1 \rightarrow 0$ 0 $F1.009$ 60.898 223 $F5-0$ 722310.733723885.541 64.268 1.425 1200 0 $F5.000$ 62.843 223 $F5-1$ 722339.769723881.469 64.056 1.702 1200 1 $F5.000$ 62.354 223 $1 \rightarrow 0$ 0 $F5.001$ 62.354 223 $1 \rightarrow 0$ $1 \rightarrow 0$ $1 \rightarrow 0$ $1 \rightarrow 0$ $F6-0$ 722337.216723793.843 63.919 1.425 1200 $3 \rightarrow 0$ $5 \rightarrow 0$ $5 \rightarrow 0$							2 >0				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	54.0	722266 027	722050 225	62.045	2 744	4200	1				225
F1-9722417.911723939.998 63.547 2.649 1200 1F1.008 60.898 224 1 60.898 224 1000 60.898 224 7 60.898 722310.733 723885.541 64.268 1.425 1200 1000 60.898 224 7 722310.733 723885.541 64.268 1.425 1200 1000 60.898 224 7 722310.733 723885.541 64.268 1.425 1200 1000 62.843 224 $75-0$ 722337.69 723881.469 64.056 1.702 1200 10000 10000 62.354 224 10000 62.354 224 10000 62.354 224 100000 62.354 224 100000 722337.216 723793.843 63.919 1.425 12000 20000000 $72000000000000000000000000000000000000$	F1-8	/22366.83/	723950.235	63.915	2.711	1200	1	T	F1.007	61.204	225
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								0	F1.008	61.204	225
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	F1-9	722417.911	723939.998	63.547	2.649	1200	1	1	F1.008	60.898	225
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							<u> </u>	0	F1 009	60 898	225
F5-1 722339.769 723881.469 64.056 1.702 1200 1 F5.000 62.354 22.9 1 - - 0 F5.001 62.354 22.9 F6-0 722337.216 723793.843 63.919 1.425 1200 - - 0 F5.001 62.354 22.9	F5-0	722310.733	723885.541	64.268	1.425	1200		•	11.005	00.000	
F5-1 722339.769 723881.469 64.056 1.702 1200 1 F5.000 62.354 22.9 1 - - 0 F5.001 62.354 22.9 F6-0 722337.216 723793.843 63.919 1.425 1200 - - 0 F5.001 62.354 22.9							()→o				
F6-0 722337.216 723793.843 63.919 1.425 1200 Image: Control of the second s	FF 4	777770 700	722004 400	64.050	1 702	1200					225
F6-0 722337.216 723793.843 63.919 1.425 1200	F2-1	/22339./69	723881.469	64.056	1.702	1200	1-Q	T	F5.000	62.354	225
F6-0 722337.216 723793.843 63.919 1.425 1200							م 0	0	F5.001	62.354	225
0 F6.000 62.494 22	F6-0	722337.216	723793.843	63.919	1.425	1200	✓				
								0	F6.000	62.494	225

EXFMH

722464.757

723954.589

61.154

1.055

1200

0

1

F1.010

F1.010

60.238

60.099

225

225

Node Easting Northing Depth Dia Connections Link IL Dia CL (m) (m) (m) (m) (mm) (m) (mm) F7-0 723848.033 1.425 722389.546 63.752 1200 62.327 225 0 F7.000 F5-2 722382.198 723840.424 63.678 2.263 F7.000 1200 1 62.151 225 F6.000 225 2 61.415 3 F5.001 62.007 225 0 F5.002 61.415 225 F5-3 722423.572 723802.692 63.333 2.247 1200 F5.002 61.086 225 1 0 F5.003 61.086 225 225 F5-4 722459.574 723839.445 63.349 2.566 1200 F5.003 60.783 1 225 0 F5.004 60.783 F5-5 722459.118 723884.800 63.138 2.622 1200 F5.004 60.516 225 1 0 F5.005 60.516 225 F5-6 722459.169 2.880 1200 F5.005 225 723916.881 63.207 1 60.327 225 0 F5.006 60.327 F5-7 225 722459.506 723927.027 63.263 2.996 1200 1 F5.006 60.267 0 F5.007 60.267 225 F1-10 722458.429 723931.877 63.322 3.084 1200 1 F5.007 60.238 225 2 60.655 225 F1.009

Appendix E Irish Water Pre-Connection Enquiry Confirmation of Feasibility Letter Marie Claire Daly Carnegie House, Library Road

Uisce Éireann Bosca OP 448 Oifig Sheachadta na **Cathrach Theas** Cathair Chorcal

Irish Water PO Box 448, South City Delivery Office, Cork City.

www.water.ie

19 February 2020

Dun Laoghaire

Dublin

A96C7W7

Dear Robert Miley,

Re: Connection Reference No CDS20000729 pre-connection enquiry -Subject to contract | Contract denied

Connection for Multi/Mixed Use Development of 454 unit(s) at Priorsland, Cherrywood, Co. Dublin.

Irish Water has reviewed your pre-connection enquiry in relation to a water connection at Priorsland, Cherrywood, Co. Dublin.

Based upon the details that you have provided with your pre-connection enquiry and on the capacity currently available in the network(s), as assessed by Irish Water, we wish to advise you that, subject to a valid connection agreement being put in place, your proposed connection to the Irish Water network(s) can be facilitated.

Water:

New connection to the existing network is feasible without upgrade as per proposed layout.

A bulk meter has to be installed on the connection main. On site storage is required for a capacity of the non domestic average flow on a peak week for 24 hour period. This storage must also have the ability to refill completely in a 12 hour period.

Pressure and flow data is required before/with a connection application being received. The minimum pressure and maximum flow, from the nearest suitable hydrant from the Connection Point and CMP, are required.

This Confirmation of Feasibility to connect to the Irish Water infrastructure does not extend to your fire flow requirements. Please note that Irish Water can not guarantee a flow rate to meet fire flow requirements and in order to guarantee a flow to meet the Fire Authority requirements, you should provide adequate fire storage capacity within your development.

In order to determine the potential flow that could be delivered during normal operational conditions, an on site assessment of the existing network is required.

Wastewater:

New connection to the existing network is feasible without upgrade.

There is an Irish Water infrastructure within and in close proximity of the site boundaries (33" water trunkmain, 225mm and 750mm sewers). The Developer will be required to survey the site to determine

Stiúrthóirí / Directors: Cathal Marley (Chairman), Niall Gleeson, Eamon Gallen, Yvonne Harris, Brendan Murphy, Maria O'Dwyer

Oifig Chláraithe / Registered Office: Teach Colvill, 24-26 Sráid Thalbóid, Baile Átha Cliath 1, D01 NP86 / Colvill House, 24-26 Talbot Street, Dublin 1, D01 NP86 Is cuideachta ghníomhaíochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Irish Water is a designated activity company, limited by shares. Uimhir Chláraithe in Éirinn / Registered in Ireland No.: 530363

QW

W-HP-

the exact location of the infrastructure. Any trial investigations shall be carried out with the agreement and in the presence of Dun Laoghaire-Rathdown County Council.

You are advised that structures or works over or in close proximity to IW infrastructure that will inhibit access for maintenance or endanger structural integrity of the infrastructure at any time are not allowed. Diversion of the infrastructure may be required subject to layout proposal of the development. The diversion will be subject to customer entering diversion agreement with IW. A wayleave in favour of Irish Water will be required over all Infrastructure that is not located within the Public Space.

For design submissions and queries related to diversion/buildover please contact IW Diversion Team via email address <u>diversions@water.ie</u>.

Strategic Housing Development

Irish Water notes that the scale of this development dictates that it is subject to the Strategic Housing Development planning process. In advance of submitting your full application to An Bord Pleanala for assessment, you must have reviewed this development with Irish Water and received a Statement of Design Acceptance in relation to the layout of water and wastewater services.

All infrastructure should be designed and installed in accordance with the Irish Water Codes of Practice and Standard Details. A design proposal for the water and/or wastewater infrastructure should be submitted to Irish Water for assessment. Prior to submitting your planning application, you are required to submit these detailed design proposals to Irish Water for review.

You are advised that this correspondence does not constitute an offer in whole or in part to provide a connection to any Irish Water infrastructure and is provided subject to a connection agreement being signed at a later date.

A connection agreement can be applied for by completing the connection application form available at **www.water.ie/connections**. Irish Water's current charges for water and wastewater connections are set out in the Water Charges Plan as approved by the Commission for Regulation of Utilities.

If you have any further questions, please contact Marko Komso from the design team on 022 54611 or email mkomso@water.ie. For further information, visit <u>www.water.ie/connections.</u>

Yours sincerely,

M Buyes

Maria O'Dwyer Connections and Developer Services

Marie Claire Daly Carnegie House, Library Road Dun Laoghaire Dublin A96C7W7

16 March 2020

Uisce Éireann Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcal

Irish Water PO Box 448, South City Delivery Office, Cork City.

www.water.ie

Dear Marie Claire Daly,

Re: Connection Reference No CDS20001675 pre-connection enquiry -Subject to contract | Contract denied

Connection for Multi/Mixed Use Development of 2,902 units at Priorsland, Cherrywood, Co. Dublin.

Irish Water has reviewed your pre-connection enquiry in relation to water and wastewater connection at Priorsland, Cherrywood, Co. Dublin.

Based upon the details that you have provided with your pre-connection enquiry and on the capacity currently available in the networks, as assessed by Irish Water, we wish to advise you that, subject to a valid connection agreement being put in place, your proposed connection to the Irish Water networks can be facilitated subject to following:

- The proposed development indicates that important Irish Water assets are present on the site (33" Cast-Iron trunk water main and Carrickmines Trunk Sewer). The Developer has to demonstrate that proposed structures and works will not inhibit access for maintenance or endanger structural or functional integrity of the infrastructure during and after the works. Drawings (showing clearance distances, changing to ground levels) and Method Statements should be included in the Detailed Design of the Development.
- Electronic copy of public water and wastewater network layout maps for the area can be requested from <u>datarequests@water.ie</u> The map should be used as a general guide only.
- This Confirmation of Feasibility to connect to the Irish Water infrastructure does not extend to your fire flow requirements. Please note that Irish Water can not guarantee a flow rate to meet fire flow requirements and in order to guarantee a flow to meet the Fire Authority requirements, you should provide adequate fire storage capacity within your development.
- The Development is a part of Cherrywood Strategic Development Zone and prior to agreeing to the proposed connection, all relevant core water and wastewater infrastructures within the Zone have to be completed, connected to the Irish Water networks and in operation.

Oifig Chlåraithe / Registered Office: Teach Colvill, 24-26 Sráid Thalbóid, Balle Átha Cliath 1, D01 NP86 / Colvill House, 24-26 Talbot Street, Dublin 1, D01 NP86 Is cuideachta ghniomhaíochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Irish Water is a designated activity company, limited by shares. Uimhir Chláraithe in Éirinn / Registered in Ireland No.: 530363

Strategic Housing Development

Irish Water notes that the scale of this development dictates that it is subject to the Strategic Housing Development planning process. Therefore:

A. In advance of submitting your full application to An Bord Pleanala for assessment, you must have reviewed this development with Irish Water and received a Statement of Design Acceptance in relation to the layout of water and wastewater services. All infrastructure should be designed and installed in accordance with the Irish Water Codes of Practice and Standard Details.

B. You are advised that this correspondence does not constitute an offer in whole or in part to provide a connection to any Irish Water infrastructure and is provided subject to a connection agreement being signed and appropriate connection fee paid at a later date.

A connection agreement can be applied for by completing the connection application form available at **www.water.ie/connections**. Irish Water's current charges for water and wastewater connections are set out in the Water Charges Plan as approved by the Commission for Regulation of Utilities.

If you have any further questions, please contact Marina Zivanovic Byrne from the design team on 01 89 25991 or email mzbyrne@water.ie. For further information, visit <u>www.water.ie/connections.</u>

Yours sincerely,

M. Buger

Maria O'Dwyer Connections and Developer Services